Masterstudium

Molecular Biotechnology

Molecular Biotechnology

Vollzeit

 

Molecular Biotechnology

Der englischsprachige Master Molecular Biotechnology ist österreichweit einzigartig: Die Schwerpunkte des Masterstudiums sind Molekulare Medizin, Humangenetik, Drug Discovery und Immunologie. Sie erforschen Krankheitsursachen auf zellulärer Ebene und entwickeln neue Verfahren und Methoden. Teil Ihrer Ausbildung sind die neuen Felder der "Big Data", der personalisierten Datenanalyse und Datensicherheit. Der Studiengang ist national und international auf universitärer Ebene sehr gut vernetzt.

Department
Applied Life Sciences
Thema
Technologien

Highlights

  • Englischsprachiges Studium mit Schwerpunkt auf Krebsforschung, Immunologie, Drug Discovery, Humangenetik und Stammzellen

  • F&E-Projekte in Kooperation mit Universitäten und Unternehmen: Allergien, zellbasierte Testsysteme und Signalwege der Zelle

     

    Facts

    Abschluss

    Master of Science in Natural Sciences (MSc)

    Studiendauer
    4 Semester
    Organisationsform
    Vollzeit

    Studienbeitrag pro Semester

    € 363,361

    + ÖH Beitrag + Kostenbeitrag2

    ECTS
    120 ECTS
    Unterrichtssprache
    Englisch

    Zur Zeit ist keine Bewerbung möglich

    Studienplätze

    40

    1 Studienbeitrag für Studierende aus Drittstaaten € 727,- pro Semester. Alle Details zum Studienbeitrag in der allgemeinen Beitragsordnung.
    2 für zusätzliche Aufwendungen rund ums Studium (derzeit bis zu € 83,- je nach Studiengang bzw. Jahrgang)

    Perspektiven

    Alle Videos
    <
    >

    Molecular Biotechnology studieren

    "Mir hat die Vielfalt der Lehrveranstaltungen sehr gut gefallen und außerdem auch die Laborpraktika, die sehr realitätsnah waren und sehr gut auf's Arbeitsleben vorbereiten", so Sibel Kurt. Sie studiert aktuell das Masterstudium Molecular Biotechnology im 4. Semester an der FH Campus Wien.

    3:16

    Whatchado mit Marcus Tötzl

    Marcus findet die Laboreinheiten in seinem Studium am coolsten: "Man bekommt ein eigenes Projekt und muss eine Woche oder länger daran arbeiten. Die Fragestellungen sind wie aus der Realität gegriffen." Er hat das Wahlfach Drug Discovery gewählt, im Zuge dessen auch in der Krebsforschung gearbeitet, und möchte nach dem Master gerne den PhD anschließen.

    03:27

    Karriere mit Molecular Biotechnology

    3 Fragen – 3 Antworten mit Florian Kabinger. Er ist Absolvent des englischsprachigen zum Masters Molecular Biotechnology

    3:21

    Vor dem Studium

    Ihr Interesse an Neuland in der Impfstoff- oder Arzneimittelentwicklung oder Themen wie Stammzellenforschung und der Wunsch, Leitungsverantwortung zu übernehmen, sind sehr gute Voraussetzungen für dieses Studium. In der Technologieentwicklung sind Sie gerne vorne mit dabei. Sie suchen keine Routine, sondern große Aufgaben in Forschung und Entwicklung. Sie sind ein sehr interessierter Mensch, der den Sachen auf den Grund gehen möchte und die Geduld hat, dafür viele Schritte zu gehen. Dabei ist Ihnen bewusst, dass man alleine viel und im Team alles erreichen kann. Englisch als die Sprache der Life Sciences gehört für Sie zum beruflichen Alltag.

    Das spricht für Ihr Studium bei uns

    Studienplatz = Laborplatz

    Teilen ist gut, aber bitte nicht den Laborplatz. Bei uns haben Sie garantiert Ihren eigenen.

    Gefragtes Wissen

    Was Sie hier lernen ist ausschlaggebend, um globale Probleme lösen zu können.

    International vernetzt

    Für ein Praktikum oder einen Job ins Ausland: auch darauf bereitet Sie Studium gut vor.

    Fachliche Zugangsvoraussetzung

    Die fachliche Zugangsvoraussetzung ist 

    • ein abgeschlossenes facheinschlägiges Bachelorstudium oder
    • ein gleichwertiger Studienabschluss einer anerkannten inländischen oder ausländischen postsekundären Bildungseinrichtung.

    In Summe 180 ECTS-Credits aus den Fachrichtungen Molekularbiologie, Biologie mit Schwerpunkt Genetik, Biologie mit Schwerpunkt Mikrobiologie, Biotechnologie, Pharmazie, Medizin, Lebensmittelbiotechnologie oder Biomedizinische Wissenschaften und davon zumindest

    • 30 ECTS-Credits - Biologie (mind. 20 ECTS-Credits aus Molekularbiologie, Genetik, Zellbiologie, Mikrobiologie, Genomforschung oder Biotechnologie und mind. 10 ECTS-Credits aus biologischen Laborübungen im Zuge des Studiums),
    • 15 ECTS-Credits - Allgemeine, Analytische, Physikalische, Organische, Bioorganische Chemie, Biochemie,
    • 6 ECTS-Credits - Mathematik, Statistik, Informatik.

    Um zu überprüfen, ob Sie die benötigten ECTS-Credits vorweisen können, ist im Zuge der Online-Bewerbung die ausgefüllte Tabelle zum Nachweis der ECTS-Credits hochzuladen. Bei einem Studium ohne ECTS-System ist es Aufgabe der Bewerber*innen, die Gleichwertigkeit nachzuweisen. In Ausnahmefällen entscheidet die Studiengangsleitung. Bei geringer Unterschreitung der vorgegebenen ECTS-Credits wird auf individueller Basis der Studiengangsleitung entschieden, ob die fehlenden ECTS-Credits durch Zusatzprüfungen kompensiert werden können.


    Sprachliche Zugangsvoraussetzung

    Das Studium wird zur Gänze in englischer Sprache durchgeführt. Das erforderliche Sprachniveau gemäß dem Gemeinsamen Europäischen Referenzrahmen für Sprachen (GER) beträgt mindestens

    • Englisch - Niveau C1.

    Beglaubigung ausländischer Dokumente

    Bewerber*innen, deren erforderliche Urkunden zur Bewerbung nicht aus Österreich stammen, benötigen je nach Staat gegebenenfalls eine Beglaubigung, damit sie die Beweiskraft inländischer öffentlicher Urkunden haben. Informationen zu den jeweils vorgeschriebenen Beglaubigungen finden Sie hier im PDF.

    Übersetzung Ihrer Dokumente

    Für Dokumente, die weder auf Deutsch noch auf Englisch verfasst sind, ist eine Übersetzung durch eine*n allgemein beeidigte*n und gerichtlich zertifizierte*n Dolmetscher*in erforderlich. Ihre Originaldokumente sollten vor der Übersetzung alle erforderlichen Beglaubigungsstempel aufweisen, damit die Stempel ebenfalls übersetzt werden. Die Übersetzung muss mit dem Originaldokument oder einer beglaubigten Kopie fest verbunden sein.

    Online-Bewerbung – Dokumente hochladen

    Laden Sie im Zuge Ihrer Online-Bewerbung Scans Ihrer Originaldokumente inklusive aller erforderlichen Beglaubigungsvermerke hoch. Bei nicht deutsch- oder englischsprachig ausgestellten Dokumenten müssen zudem Scans von den dazugehörigen Übersetzungen hochgeladen werden. Über die Gleichwertigkeit internationaler (Hoch-)Schulabschlüsse entscheidet die Studiengangs- bzw. Studienprogrammleitung. Die Prüfung Ihrer Dokumente ist daher ausschließlich im Zuge des laufenden Bewerbungsverfahrens möglich.

    Ihr Weg zum Studium an der FH Campus Wien beginnt mit der Registrierung auf unserer Bewerbungsplattform. In Ihrem Online-Account können Sie direkt mit der Bewerbung starten oder einen Reminder aktivieren, wenn die Bewerbungsphase noch nicht begonnen hat.

    Das Verhältnis der Studienplätze zu Bewerber*innen beträgt im Masterstudium Molecular Biotechnology derzeit ca. 1:4,5.

    Aus organisatorischen Gründen empfehlen wir Bewerber*innen außerhalb der EU, des EWR und der Schweiz, ihre Bewerbung spätestens bis Ende Februar abzuschicken.

    Dokumente für Ihre Online-Bewerbung

    1. Identitätsnachweis
      • Reisepass oder
      • Personalausweis oder
      • österreichischer Führerschein (Staatsbürgerschaftsnachweis erforderlich) oder
      • Aufenthaltstitel (Staatsbürgerschaftsnachweis erforderlich)
    2. Nachweis über eine Namensänderung, falls zutreffend (z. B. Heiratsurkunde)
    3. Nachweis über die Erfüllung der fachlichen Zugangsvoraussetzung
      • Studienabschlussurkunde und
      • Transcript of Records oder Diploma Supplement
      • Wenn Sie Ihr Studium noch nicht abgeschlossen haben, laden Sie bitte einen Nachweis über alle bisher im Zuge des facheinschlägigen Studiums absolvierten Lehrveranstaltungen inkl. ECTS-Credits hoch.
    4. Sprachnachweis Englisch Niveau C1 des Gemeinsamen Europäischen Referenzrahmens für Sprachen (GER). Als Nachweis gilt:
      • Transcript of Records/Diploma Supplement eines mindestens zweijährigen Studiums, das an einer Hochschule eines EU-/EWR-Mitgliedstaats, der Schweiz, des Vereinigten Königreichs Großbritannien und Nordirland, der USA, Australiens, Neuseelands oder Kanadas absolviert wurde (bzw. Alternative vor Abschluss, siehe Punkt 3)  - Kein weiterer Englisch-Sprachnachweis nötig.
      • Englisch-Zertifikat (nicht älter als 3 Jahre), z. B.:
        • FH Campus Wien: Oxford Test of English Level C1 (score range = 141-170)
        • TOEFL: 95+ Punkte
        • IELTS Academic: Overall Band Score = mind. 7
        • Cambridge: Ergebnis Level C1 (minimum scale score = 180 bei B2 First (FCE) oder C1 Advanced (Certificate in Advanced English CAE))
        • Nachweise über ein höheres Sprachniveau gelten ebenfalls.
    5. tabellarischer Lebenslauf auf Englisch
    6. Motivationsschreiben auf Englisch
    7. ausgefüllte Tabelle zum Nachweis der ECTS-Credits aus vorherigen Studien
    8. Beglaubigungen und Übersetzungen, falls zutreffend (siehe Reiter "Ausländische Dokumente und Abschlüsse")

    Ihre Bewerbung ist gültig, wenn Sie die erforderlichen Unterlagen vollständig hochgeladen haben. Sollten Sie zum Zeitpunkt Ihrer Online-Bewerbung noch nicht über alle Dokumente verfügen, reichen Sie diese bitte umgehend nach Erhalt per E-Mail an das Sekretariat nach.

    Nach Abschluss Ihrer Online-Bewerbung erhalten Sie eine E-Mail-Bestätigung mit Informationen zum weiteren Ablauf.

    1Wenn Sie Ihr Studium noch nicht abgeschlossen haben, laden Sie bitte einen Nachweis über alle bisher im Zuge des facheinschlägigen Studiums absolvierten Lehrveranstaltungen inkl. ECTS-Credits hoch und reichen Sie den Nachweis umgehend nach Erhalt per E-Mail an das Sekretariat nach.

    Wenn die Bewerbungsunterlagen vollständig eingelangt sind und den Zugangsvoraussetzungen entsprechen, werden Sie zum ersten Teil des Aufnahmeverfahrens eingeladen. Der erste Teil ist ein computergestützter, schriftlicher Aufnahmetest vor Ort, bei dem Ihre Kenntnisse in Biologie, Molekularbiologie, Zellbiologie, Englisch, etc. auf Life Science Bachelor-Niveau erfragt werden, sowie kognitive Fragen gestellt werden.

    Für den schriftlichen Aufnahmetest, der am Hauptstandort der FH Campus Wien stattfindet, ist Ihre persönliche Anwesenheit in Wien erforderlich.

    Nach positiver Absolvierung des schriftlichen Aufnahmetests, werden Sie zum zweiten Teil des Aufnahmeverfahrens eingeladen, der als Online-Interview geplant ist. Hier haben Sie die Möglichkeit, Ihre Motivation, Ihr Studium und Ihre beruflichen und wissenschaftlichen Ziele vorzustellen, sowie Wissensfragen auf Life Science Bachelor-Niveau zu beantworten. Das Interview wird mit einem Online-Meeting-Tool durchgeführt. Test und Interview werden mit Punkten bewertet und in eine Reihungsliste eingetragen.

    • Kriterien
      Die Kriterien, die zur Aufnahme führen, sind ausschließlich leistungsbezogen. Geographische Zuordnungen der Bewerber*innen oder auch eine erneute Bewerbung der Kandidat*innen haben keinen Einfluss auf die Aufnahme. Die Zugangsvoraussetzungen müssen erfüllt sein. Die abschließende Reihung der Bewerber*innen erfolgt nach der Gewichtung der Ergebnisse des Aufnahmetests (60%) und des Aufnahmegesprächs (40%).
      Die Aufnahmekommission, zu der unter anderem die Studiengangsleitung und die Lehrendenvertretung gehören, vergibt Studienplätze anhand der Rankingreihe. Der Gesamtprozess sowie alle Testergebnisse und Bewertungen des Aufnahmeverfahrens werden transparent und nachvollziehbar dokumentiert.
    • Warteliste
      Sie werden auch auf der Warteliste je nach der von Ihnen erreichten Punkteanzahl im Auswahlverfahren gereiht. Sollten Sie nach dem Auswahlverfahren auf der Warteliste stehen, besteht für Sie die Möglichkeit, dass Ihnen durch Absagen und Nachrückungen ein Studienplatz nach Verfügbarkeit für das aktuelle Wintersemester angeboten werden kann. Dies erfolgt meist sehr kurzfristig und kann nicht im Vorhinein festgelegt werden. Wir bitten um Verständnis, dass aus organisatorischen Gründen keine Auskunft über den aktuellen Platz gegeben werden kann und Sie umgehend informiert werden, sollten Sie einen Studienplatz angeboten bekommen.
    • Absagen von Seiten des Studienganges
      Sollten Sie nach dem Auswahlverfahren eine Absage erhalten, können Sie sich für das nächste Wintersemester erneut bewerben sobald das Bewerbungsfenster offen ist. Sie müssen sich dann erneut online bewerben, alle notwendigen Dokumente vorlegen und das komplette Auswahlverfahren erneut durchlaufen.
    • Zusagen
      Sie werden per Email über die Zusage für einen Studienplatz verständigt. Ihnen wird der Ausbildungsvertrag und diverse Verordnungen per Email zugeschickt. Den Vertrag haben Sie bis zur genannten Deadline unterschrieben zu retournieren, um Ihren Ausbildungsplatz zu sichern und anzunehmen. Die Rechnung für den Studienbeitrag wird Ihnen separat von der Buchhaltung zugeschickt, das kann einige Zeit dauern. Der Stundenplan wird voraussichtlich ein bis zwei Wochen VOR jeweiligem Beginn des Semesters freigeschalten. Alle weiteren studienrelevanten Informationen werden Ihnen entweder per Email zugeschickt oder Sie bekommen diese in der Startveranstaltung zu Beginn des Studienjahres mitgeteilt!
    • Absagen von Seiten des*r Bewerber*in
      Sollten Sie Ihren Studienplatz nicht annehmen wollen oder können, bitten wir Sie um rasche Informierung an das Studiengangssekretariat via biotechnologie@fh-campuswien.ac.at. Ihr Platz wird dann an die*en Nächstgereihte*n vergeben. Absagen bzw. Rücktritt vom Ausbildungsvertrag werden nur schriftlich akzeptiert.

    Bewerbungsfrist WiSe 2025/26: 1. Jänner 2025 bis 30. März 2025

    Schriftlicher Aufnahmetest: voraussichtlich KW 17, 2025
    Aufnahmeinterviews: voraussichtlich KW 20/21, 2025

    Semesterdaten

    Wintersemester 2024/25: 9. September 2024 bis 31. Jänner 2025
    Sommersemester 2025: 10. Februar 2025 bis 26. Juli 2025
    Wintersemester 2025/26: ab 8. September 2025


    Im Studium

    Sie haben die Möglichkeit, hochmoderne Hörsäle und Labors für Forschung und Lehre zu nutzen. Darüber hinaus profitieren Sie in Lehre und Forschung von unserer engen Kooperation mit der Universität Wien und der Medizinischen Universität Wien. International haben wir ein starkes Netzwerk aufgebaut, das Ihnen die Chance eröffnet, an renommierten Universitäten wie dem King’s College  in London, oder der Universität Stockholm in Schweden zu  studieren bzw. zu forschen. Zahlreiche F&E-Projekte am Studiengang bieten Ihnen die Möglichkeit, die anwendungsorientierte Forschung in der Praxis kennenzulernen und wertvolle Kontakte für Ihre berufliche Zukunft zu knüpfen. Praxisnähe ist auch garantiert, wenn wir mit hochkarätigen Expert*innen einen unserer frei zugänglichen Vortragsabende im Rahmen der Campus Lectures veranstalten.

    Der Fachbereich Molekulare Biotechnologie ist in der medizinischen und pharmazeutischen Forschung aktiv. Im Studium profitieren Sie von den Ergebnissen unserer bereits etablierten Forschungsschwerpunkte: Signalwege der Zelle und Immunologie. In der Allergieforschung haben wir den Fokus auf Nahrungsmittelallergien.

    Außerdem werden die Pathomechanismen von inhalatorischen Allergien – wie Pollenallergie – mit Hilfe von Epithel-Zellkultur-Systemen erforscht. Damit ist das Studium nicht nur eine gute Basis für medizinische und pharmazeutische Forschung, sondern auch für ein Doktoratsstudium an einer Universität.

    • Das österreichweit einzigartige englischsprachige Masterstudium bietet Ihnen einen ausgewogenen Mix aus molekularbiologischen Fächern sowie „transversal skills“. 
      • Sie werden theoretisches und methodisches Wissen in der molekularen Medizin und in Drug Discovery erwerben.
      • Sie werden die wichtigsten Schritte der modernen Arzneistoffentwicklung von den ersten Screenings bis zum zugelassenen Arzneimittel verfolgen.
    • Weitere Studienschwerpunkte: Immunologie, Neurobiologie, Stammzellen, Pathologie sowie Signalling Pathways, Pharmakologie und Datenanalyse.
    • Sie verbessern Ihre Jobperspektiven mit berufspraktischen Zusatzqualifikationen. Sie lernen mehr über Innovation, Entwicklung von Arzneimitteln und können sich in den unterschiedlichen Kulturen der Biotech-Branche bewegen. Sie setzen sich mit Bioethik ebenso auseinander wie mit Firmengründung und strategischer Unternehmensführung.
    • Im Rahmen Ihrer Ausbildung perfektionieren Sie Ihr Englisch, die internationale Fachsprache der Life Sciences. Dazu kommen fachübergreifende Kompetenzen, die Sie in der Forschung und in Leitungsfunktion benötigen.
    • Das gesamte 4. Semester des Studiums ist für das Forschungsprojekt eingeplant, welches Sie im In- oder Ausland absolvieren können. Die Forschungsergebnisse des Projekts werden in Form der Masterarbeit präsentiert.
     

    Stimmen von Studierenden

    <
    >
    Portrait Florian Kabinger

    “Nach dem Master hat man sehr viele Möglichkeiten: etwa ein Doktorat dran zu hängen, oder in die Industrie zu gehen, beispielsweise ins Quality Management oder in andere Bereiche.”

    Florian Kabinger hat Molecular Biotechnology studiert.

     

    Lehrveranstaltungsübersicht

    Modul Bioinformatics, In Silico Biology & AI

    Bioinformatics, In Silico Biology & AI

    2 SWS   2 ECTS

    Lernergebnisse

    • Upon successful completion of the module, students are able to perform and critically analyse bioinformatic tasks, such as sequence alignments, substitution matrix applications, and PSSM usage, while overcoming common tool-related challenges.

    • Students demonstrate proficiency in navigating and using biological databases, conducting advanced searches, filtering data, and extracting actionable insights from genomic, proteomic, and literature resources.

    • Students are able to utilize generative AI tools (e.g., ChatGPT) for scientific tasks, including creating and refining prompts, critically evaluating their outputs, and applying foundational knowledge of machine learning and AI algorithms to biological data analysis.

    • Students are able to analyse and predict protein features (e.g., conserved domains, secondary and tertiary structures) using relevant algorithms and visualization tools, integrating insights into functional and structural biology.

    • Students can design and simulate virtual cloning experiments, including plasmid mapping, virtual restriction digests, primer design, and result interpretation, addressing common experimental challenges.

    • Students are skilled in data management and analysis, using SQL commands to import, join, query, and export biological datasets, ensuring robust integration and interpretation of in silico results.

    2 SWS
    2 ECTS
    Bioinformatics & AI | ILV

    Bioinformatics & AI | ILV

    2 SWS   2 ECTS

    Inhalt

    • ​​Foundational Bioinformatics Skills
      Students understand and apply fundamental bioinformatic algorithms (e.g., sequence alignment, search methods) and interpret results critically, addressing common tool challenges. 

    • Data Processing: Students utilize biological data, understand common file formats, and analyse sequences (DNA, RNA, proteins), including alignment and comparison of sequences. 

    • Databases and Analysis: learn to work with biological databases, perform advanced search methods, and effectively filter and interpret results. 

    • Generative AI: Introduction to generative AI models as a tool to support scientific work, create targeted prompts, and assess potential challenges in working with AI.​ 

     

    Lernergebnisse

    • Students can understand and apply fundamental bioinformatic techniques (e.g., local and global sequence alignments, multiple sequence alignments, PSSMs, substitution matrices) and interpret results critically and overcome common tool challenges.

    • Students can effectively navigate and utilize diverse biological databases (e.g., literature, sequence data, genome browsers) to perform advanced searches and filter and analyse results.

    • Students can leverage generative AI tools like ChatGPT to support scientific tasks, create and refine prompts, and assess the strengths and limitations of such AI models.

    • Students are able to use basic SQL language commands to manage their own data and data from external sources to perform tasks such as data importing, joining and combining data from different sources, querying & filtering results and exporting the resulting data.

    Lehrmethode

    • ​​​Lectures with structured exercises 

    • Dialogue and discussion 

    • Group work 

    • Individual Project work​​ 

    Prüfungsmethode

    Endprüfung: Final individual project work

    Literatur

    • ​​Pevsner, J. Bioinformatics and Functional Genomics 3rd Edition(Blackwell Pub, Chichester, West Sussex, UK; Hoboken, New Jersey, 2015). 

    • ​Daniel J Rigden, Xosé M Fernández, The 2024 Nucleic Acids Research database issue and the online molecular biology database collection, Nucleic Acids Research, Volume 52, Issue D1, 5 January 2024, Pages D1–D9, doi.org/10.1093/nar/gkad1173&;

    Unterrichtssprache

    Englisch

    2 SWS
    2 ECTS
    Modul Communication, Culture & Bioethics

    Communication, Culture & Bioethics

    4 SWS   5 ECTS

    Lernergebnisse

    • Upon successful completion of the module, students are able to identify, describe, and critically reflect on bioethical issues, considering national and international dimensions and the ethical impact of technological advancements such as artificial intelligence (AI).

    • Students are able to evaluate ethical challenges in the life sciences, pharmaceutical, and biotech industries, articulating informed perspectives and integrating these principles into decision-making and professional responsibilities.

    • Students can work collaboratively in interdisciplinary and intercultural teams, leveraging diversity to address complex challenges, including those related to AI, while developing resilience and reflective practices for personal and professional growth.

    • Students are able to effectively communicate scientific and ethical concepts to diverse audiences, adapting their communication style and media to suit peers, professionals, and the general public, and engaging in meaningful discussions.

    • Students can critically evaluate the role of AI in biotechnology and scientific communication, identifying its applications and limitations while discussing its ethical implications, such as AI-generated content and its impact on societal trust and professional practices.

    • Students can lead discussions and projects on scientific and ethical topics in multicultural settings, integrating feedback, building networks, and promoting ethical practices in an evolving global landscape.

    4 SWS
    5 ECTS
    Bioethics | ILV

    Bioethics | ILV

    1 SWS   1 ECTS

    Inhalt

    • ​​Introduction to bioethical concepts and theories  

    • ​Critical reflection of current bioethical issues relevant to the life sciences/pharmaceutical/ biotech industries 

    • ​Ethics in emerging technologies (eg artificial intelligence and other innovations relevant to the professional field) 

    • ​Responsibility (individual, societal, professional) and preparedness to act ethically in alignment with these responsibilities 

    • ​Open debate on global dimensions and multidimensional perspectives of key issues of bioethical concern 

    • ​Insights into the Ethics Committee of FH Campus Wien​ 

    Lernergebnisse

    • Students are informed about and can describe the (bio-)ethical characteristics specific to the life sciences/pharmaceutical/biotech industries.

    • Students can reflect on bioethical issues independently and critically and can articulate these reflections effectively.

    • Students are aware of the national and international dimensions of bioethical issues, can consider multiple perspectives, and are able to actively contribute to open, meaningful debate about such issues.

    • Students can discuss the ethical impact of new development trends relevant to their professional field (e.g. opportunities/limitations/challenges of artificial intelligence).

    • Students can explain their personal, societal, and professional responsibilities in addressing current and future bioethical global concerns and are prepared to act accordingly.

    Lehrmethode

    • Lecture with activating methods,  
    • group work,  

    • discussion,  

    • work assignments with (peer) feedback,  

    • presentation,  

    • reflection,  

    • blended learning

    Prüfungsmethode

    Immanente Leistungsüberprüfung: All course tasks are assessed and contribute to the final mark: including active participation in the in-class sessions, in group discussions, written individual & group tasks, self-study/-reflection, blended learning.

    Literatur

    • ALLEA (2017): The European Code of Conduct for Research Integrity 

    • High-Level Expert Group on Artificial Intelligence (2019): The Assessment List for Trustworthy AI, European Commission 

    • Kundu (2019): Ethics in the Age of Artificial Intelligence, Scientific American 

    • World Economic Forum (2018): Young Scientists Code of Ethics 

    • Current publications from: 

    • the Austrian Agency for Scientific Integrity (https://oeawi.at/en/) 

    • the Austrian Bioethics Commission (https://www.bundeskanzleramt.gv.at/en/topics/bioethics-commission.html?lang=en) 

    • Ethics of Science and Technology and Bioethics, UNESCO 

    • Green Lab Austria (https://greenlabsaustria.at/) 

    • The Hastings Center (https://www.thehastingscenter.org/) 

    • the Nuffield Council on Bioethics (https://www.nuffieldbioethics.org/) 

    • The World Commission on the Ethics of Scientific Knowledge and Technology (https://www.unesco.org/en/ethics-science-technology/comest) 

    Unterrichtssprache

    Englisch

    1 SWS
    1 ECTS
    Interdisciplinary and Intercultural Team Dynamics | ILV

    Interdisciplinary and Intercultural Team Dynamics | ILV

    1 SWS   1 ECTS

    Inhalt

    • ​​Onboarding workshop with final group presentation. 

    • ​Students become acquainted with each other through a guided process, which takes their various educational biographies and diverse national and cultural backgrounds into account. 

    • ​They experience, through mutual exchange, the strengths and weaknesses that may/will play a role in the short-term (duration of their studies), mid-term (3-5 years after their studies; professional orientation) and long-term (future profession). 

    • ​They build self-directed teams which utilise the diversity at hand as a resource. They learn to understand the advantages of both individual and team-based learning and working. 

    • ​They recognize the richness of the diversity within their (studies) peer-group as well as synergies at all levels and are encouraged to develop their own professional network which can be of beneficial use in the short and midterm, at home or abroad and their career start in an international and interdisciplinary, research-intensive and innovative sector. 

    • ​They are also encouraged to recognize their own personal/private network which can also be of use in the short-, mid- and long-term. 

    • ​They can, in collaborative groups, generate and integrate knowledge, solutions and courses of action based on real perceived challenges, selected by themselves, from their studies and future professional life and tasks derived therefrom. 

    • ​They can see and appreciate multiple perspectives as an approach to understanding complex challenges in the interdisciplinary and intercultural environment of biotechnology. 

    • ​They are aware of the benefits of continuous reflection (individually and/or teams) in order to benefit from potential opportunities and to develop and apply resilience and coping strategies against potential threats. 

    • ​They are encouraged to be open, tolerant and flexible towards the new and unfamiliar. 

    • ​They are introduced to the use of AI in Biotechnology and scientific communication and are encouraged to continuously critically analyse their use of AI as well as the general use of AI. 

    • ​They become acquainted with the multifaceted educational biographies and diverse cultural backgrounds of the degree programme’s lecturers.​ 

    Lernergebnisse

    • Students can effectively collaborate in self-directed, diverse teams, leveraging individual and collective strengths for both academic and professional success.

    • Students can describe and utilize the richness of diversity within their peer group, recognizing synergies and building a professional network beneficial for their career.

    • Students can generate and integrate knowledge and solutions collaboratively, addressing real-world challenges from their studies and future professional tasks, including the critical analysis and application of AI in Biotechnology.

    • Students can analyse a nd appreciate multiple perspectives, enhancing their understanding of complex challenges in an interdisciplinary and intercultural biotechnology environment, while critically evaluating the role of AI in these contexts.

    • Students can continuously reflect on their experiences and develop resilience and coping strategies, benefiting from potential opportunities and mitigating potential threats, including those related to the ethical and effective use of AI.

    Lehrmethode

    • ​​Lecture 

    • ​Dialogue and discussion 

    • ​Individual work 

    • ​Collaborative learning 

    • ​Problem-based learning 

    • ​Project work 

    • ​Public Speaking and Presentation 

    • ​Research-based learning​ 

    Prüfungsmethode

    Immanente Leistungsüberprüfung: Participation

    Literatur

    ​Lecturers’ hand-outs via Moodle​

    Unterrichtssprache

    Englisch

    1 SWS
    1 ECTS
    Scientific Communication I  | ILV

    Scientific Communication I  | ILV

    2 SWS   3 ECTS

    Inhalt

    • ​​The students learn to work alone and in varying teams within a group containing colleagues from various international and cultural backgrounds. 

    • ​They begin the course by assessing their English language levels (listening, reading, speaking and writing) according to the ‘Common European Framework for Reference of Languages’. 

    • ​The students undertake a guided self-assessment of their previous project experience working in teams, as well as their (scientific) communication experience and identify those areas that require improvement. 

    • ​Students are introduced to Continuous Professional Development (CPD) and are encouraged to personally implement it for their future careers. 

    • ​They improve – and learn the importance of - their communication of scientific topics and proposals relevant to their field of studies clearly using the appropriate supporting media, and deal with arising questions (individually and in teams) and how to modulate this, depending on which audience they are communicating with (peer, lay, professional etc.). 

    • ​They learn how to be objectively critical when assessing their own and their peers’ presentation performance, both in a live and in a retrospective situation (video self-assessment and -reflection) taking international professional etiquette into account. 

    • ​They discuss scientific/ethical topics, justifying their standpoint, and on occasion take the lead by presiding over these discussions in an international or multicultural group. 

    • ​They critically analyse and understand the scientific literature (scientifically and linguistically). 

    • ​They critically discuss and reflect on the positive and problematic use of AI in scientific communication and are encouraged to continuously critically analyse its use. 

    • ​They learn about the processes of scientific publishing (impact factor, open access …). 

    • ​They form small, highly functioning teams which design and manage a substantial piece of independent scientific/ethical research taking intercultural and competence diversity into account. 

    • ​They may design and maintain a webpage. They are always aware of the international and inter- & transcultural importance to their chosen field.​ 

    Lernergebnisse

    • Students can effectively communicate scientific topics to diverse audiences, tailoring their communication style depending on the audience (e.g. peers, lay audiences, professionals)and using appropriate supporting media for their communication.

    • Students can critically analyse and discuss, and lead discussions, on scientific and ethical topics in a diverse (international or multicultural) setting, justifying their standpoint.

    • Students can critically and objectively analyse their own and their peers' presentation performance, both in live and retrospective situations using self-assessment and reflection taking international professional etiquette into account. They also understand professional etiquette in an international context e.g. how different cultures might approach giving and receiving feedback.

    • Students can work effectively in diverse teams to design and manage a substantial piece of independent scientific/ethical research including considering intercultural and competence diversity within their teams.

    • Students understand and can critically analyse the use of AI in scientific communication, including both its positive and problematic aspects. They can identify situations where AI can be beneficial as well as situations where it can be problematic and can discuss the ethical implications of AI-generated text and images.

    Lehrmethode

    • ​​Guided self-reflection 

    • Peer-feedback 

    • Lecture with structured exercises 

    • Dialogue and discussion 

    • Individual work 

    • Collaborative learning 

    • Supervised distance learning 

    • Self-study 

    • Blended learning 

    • Problem-based learning 

    • Project work 

    • Research-based learning 

    • Public Speaking and Presentation 

    Prüfungsmethode

    Immanente Leistungsüberprüfung: Each task is assessed

    Literatur

    • ​​​McCarthy & O’Dell (2016): Academic Vocabulary in Use, Cambridge University Press, 978-1107591660 
    • ​Skern (2019): Writing Scientific English: A Workbook, 3rd Ed., UTB, Facultas, ISBN-13: 978-3825250669 
    • ​Current scientific literature​​ 

    Unterrichtssprache

    Englisch

    2 SWS
    3 ECTS
    Modul Drug Development

    Drug Development

    1 SWS   2 ECTS

    Lernergebnisse

    • Upon successful completion of the module, students are able to explain the stages of clinical drug development, including trial design (e.g., RCTs, epidemiological studies), ethical considerations, and the regulatory framework established by EMEA, FDA, and ICH.

    • Students can rationalize and conceptualize screening library designs, evaluate synthetic and natural product pools, and assess the impact of these designs on drug development strategies and screening methodologies.

    • Students are able to classify and apply screening technologies, including high-throughput screening, target identification, hit-to-lead development, and lead optimization, using methods such as fluorescence and genotoxicity assays.

    • Students can discover, select, and engineer biologicals, including monoclonal antibodies, bispecific antibodies, nanobodies, and antibody-drug conjugates, along with methods for their production and quality control.

    • Students can critically assess scientific and ethical issues in clinical research and drug development, including the role of advanced therapy medicinal products (ATMPs), drug repurposing, and considerations for special populations in clinical trials.

    • Students can apply analytical characterization techniques for biologicals, including biosimilars, and evaluate emerging technologies and quality control methods used in their production and regulation.

    1 SWS
    2 ECTS
    Clinical Drug Development | ILV

    Clinical Drug Development | ILV

    1 SWS   2 ECTS

    Inhalt

    • ​​​Classes of Pharmaceuticals (biopharmaceuticals and small-molecule drugs) 

    • ​Case studies: Clinical development of selected drugs  

    • ​Clinical drug development process 

    • ​Selected aspects of drug discovery and preclinical development 

    • ​Overview clinical study designs, outcomes and inclusion/exclusion criteria 

    • ​Randomized Controlled Trials (RCTs): Randomization, Blinding and Placebos 

    • ​Epidemiological study designs 

    • ​Conduct of clinical trials, data analysis and interpretation 

    • ​Ethical aspects, the origins and principles of Good Clinical Practice (GCP) 

    • ​Regulatory bodies, international regulations (EMEA, FDA, ICH) 

    • ​Phase IV/Post-marketing surveillance, life cycle management 

    • ​Interfaces: Regulatory Affairs and Pharmacovigilance, Marketing and Product Life Cycle Management 

    • ​Special chapters: Advanced Therapy Medicinal Products (ATMPs), repurposing, special populations ​ 

    Lernergebnisse

    • Students can describe clinical drug development and its integration in the overall development process of medicinal products.

    • Students can explain the design of clinical trials such as RCTs and epidemiological study types, and their

    • Students can discuss ethical aspects of clinical trial conduct and the application of Good Clinical Practice (GCP) guidelines.

    • Students can outline of the role of advanced therapy medicinal products (ATMPs), repurposing and the importance of special populations in clinical studies.

    • Students are able to discuss current scientific and ethical topics related to clinical research in a global context.

    Lehrmethode

    • Lecture with structured exercises 

    • Dialogue and discussion 

    • Group work 

    • Blended learning 

    • Guest lectures 

    Prüfungsmethode

    Endprüfung: Exercises during class, exam

    Literatur

    • ​​​Hill, R.; Rang, H: Drug Discovery and Development (20213). Elsevier 

    • ​Schulz K.; Grimes D.A.: The Lancet Handbook of Essential Concepts in Clinical Research (20192). Elsevier 

    • ​Hackshaw, A.K.: A concise guide to clinical trials (2009). Wiley-Blackwell/BMJ Books 

    • ​Hulley, S. B., Cummings S.R., Browner W.S., Grady D.G., and Newman T.B.: Designing Clinical Research. (20134). Lippencott, Williams and Wilkins​​ 

    Unterrichtssprache

    Englisch

    1 SWS
    2 ECTS
    Modul Genetics, Gene Therapy & Precision Medicine

    Genetics, Gene Therapy & Precision Medicine

    5.5 SWS   8 ECTS

    Lernergebnisse

    • Upon successful completion of the module, students are able to explain the mechanisms of gene regulation and molecular processes across DNA, RNA, and protein levels, including transcriptional, post-transcriptional, and epigenetic regulation in prokaryotic and eukaryotic systems.

    • Students are able to select and evaluate appropriate molecular methods and analytical panels for diagnosing genetic diseases, assessing their applications, limitations, and reliability in precision medicine and medical genetics.

    • Students are able to describe the structural diversity and catalytic roles of RNA, including its modifications, processing mechanisms, and their impact on translation, gene expression, and disease pathology.

    • Students are able to critically evaluate gene therapy modalities and RNA-based therapeutic applications, understanding their clinical phases, limitations, and potential for treating genetic disorders and complex diseases.

    • Students can apply the principles of precision medicine by integrating genetic and biomarker data to develop personalized diagnostic and treatment strategies for patients.

    • Students are able to analyse and discuss the ethical, clinical, and commercial aspects of advanced therapies and precision medicine, considering their opportunities, limitations, and impact on healthcare systems and society.

    5.5 SWS
    8 ECTS
    Medical Genetics | VO

    Medical Genetics | VO

    2 SWS   3 ECTS

    Inhalt

    ​​​During this course following topics will be discussed: 

    • ​monogenetic diseases and modes of inheritance 
    • ​methods in genetic diagnostics – from sample to report 
    • ​basics in data analysis and data interpretation 
    • ​cytogenetics, prenatal diagnostics, tumour genetics, gene therapy 
    • ​ethics of medical genetics 

    ​The students will learn the basics of medical genetics, underlying molecular mechanisms and will be introduced into the workflow of modern genetic diagnostics. Finally, the new knowledge will be applied to solve cases.​​ 

    Lernergebnisse

    • Students can differentiate between hereditary and somatic mutations.

    • Students can name the limitations of molecular methods currently applied in medical diagnostics.

    • Students are able to select a suitable molecular technique for a given genetic disease.

    • Students have gained sufficient understanding of applications, limitations and ethics in medical genetics to actively take part in discussions.

    • Students have fundamental knowledge about genetic diseases, underlying molecular mechanisms and corresponding molecular methods.

    Lehrmethode

    • ​​Lecture with structured exercises 

    • ​Dialogue and discussion 

    • ​Supervised distance learning 

    • ​Self-study 

    • ​Blended learning 

    • ​Flipped classroom 

    • ​Problem-based learning​ 

    Prüfungsmethode

    Endprüfung: Written exam (multiple choice and open questions)

    Literatur

    • ​Text book 
    • Schaaf C.p., Zschocke J., Basiswissen Humangenetik , 2018, ISBN 978-3-662-56146-1 
    • In addition, current scientific literature will be mentioned with the corresponding topics.​ 

    Unterrichtssprache

    Englisch

    2 SWS
    3 ECTS
    Molecular Genetics | VO

    Molecular Genetics | VO

    1.5 SWS   2 ECTS

    Inhalt

    • ​​​Fundamental features of genetics and genetic engineering 

    • ​Different levels of regulation of gene expression in pro- and eukaryotes 

    • ​Transcriptional regulation (transcription in eukaryotes, transcriptional activation, properties of transcription factors, methods for analysis of transcription factors and regulatory regions) 

    • ​Posttranscriptional regulation (splicing, transport, stability of mRNA, translational control) 

    • ​Effects of chromatin (composition, histone modifications, regulation, epigenetics) 

    • - Methods for analysis of genetics and gene regulation in vitro and in vivo​​ 

    Lernergebnisse

    • Students are able to describe the different levels of regulation of gene expression in prokaryotes and eukaryotes.

    • Students can describe the mechanisms of transcriptional regulation, including transcription in eukaryotes, transcriptional activation, properties of transcription factors, and methods for analysing transcription factors and regulatory regions.

    • Students are able to explain the processes involved in posttranscriptional regulation, such as splicing, mRNA transport, stability, and translational control.

    • Students can explain the effects of chromatin composition, histone modifications, chromatin regulation, and epigenetics on gene expression.

    • Students can discuss various methods for analysing genetics and gene regulation both in vitro and in vivo.

    Lehrmethode

    ​Lecture​

    Prüfungsmethode

    Endprüfung: Written exam on the computer (multiple choice)

    Literatur

    • ​​​Bruce Alberts, Alexander Johnson, Julian Lewis, David Morgan, Martin Raff, Keith Roberts, Peter Walter (2014): Molecular Biology of the Cell. Garland Science, ISBN-13: 978-0815344643 

    • ​David Latchman (2010): Gene Control. Garland Science, ISBN-13: 978-0815365136​​ 

    Unterrichtssprache

    Englisch

    1.5 SWS
    2 ECTS
    RNA | VO

    RNA | VO

    2 SWS   3 ECTS

    Inhalt

    • ​​RNA Structure: Examines primary to tertiary structures and the role of the 2'-OH group. 

    • ​RNA Modifications: Covers post-transcriptional alterations affecting translation and antibiotic resistance. 

    • ​Catalytic Capabilities: Focuses on ribozymes and their role in essential reactions like splicing. 

    • ​RNA Processing: Includes capping, polyadenylation, RNA editing, and alternative splicing. 

    • ​Regulatory Mechanisms: Discusses RNA binding motifs and their roles in RNA metabolism. 

    • ​Therapeutic Applications: Explores antisense oligonucleotides, ribozymes, RNA aptamers, and mRNA vaccines. 

    • ​RNA World Hypothesis: Investigates the early stage of life where RNA served as genetic material and catalysts.​ 

    Lernergebnisse

    • Students are able to explain the structural diversity of RNA, from primary to tertiary structures, and understand the significance of RNA's 2'-OH group in enabling this diversity and its enzymatic activity.

    • Students are able to describe the various RNA modifications and their impact on processes such as translation and antibiotic resistance.

    • Students are able to analyse the catalytic capabilities of RNA, with a focus on ribozymes and their role in essential reactions like splicing.

    • Students are able to understand and explain the mechanisms of RNA processing, including capping, polyadenylation, RNA editing, and alternative splicing, and their contributions to the complexity of the proteome.

    • Students are able to evaluate the therapeutic and diagnostic applications of RNA, including antisense oligonucleotides, ribozymes, RNA aptamers, and mRNA vaccines, and discuss the RNA World hypothesis and its implications for the evolution of life.

    Lehrmethode

    Lecture

    Prüfungsmethode

    Endprüfung: Written exam

    Literatur

    • D. Elliott and M. Ladomery (2011): Molecular Biology of RNA. Oxford University Press, ISBN-13: 978-0199671397

    Unterrichtssprache

    Englisch

    2 SWS
    3 ECTS
    Modul Medical Genetics & RNA Labs

    Medical Genetics & RNA Labs

    6 SWS   6 ECTS

    Lernergebnisse

    • Upon successful completion of the module, students are able to execute key molecular techniques such as PCR, immunohistochemistry (IHC), oligonucleotide-based analyses, and Northern Blot to investigate gene expression and genetic variations.

    • Students are able to analyse mutations in specific genes, such as CF and oncogenes, and assess RNA stability and integrity under various conditions using appropriate experimental approaches (e.g., EMSA and RNA integrity assays).

    • Students are able to apply quantitative PCR (qPCR) and Electrophoretic Mobility Shift Assay (EMSA) techniques to quantify RNA levels, assess gene expression changes, and detect RNA-protein interactions in diverse experimental settings.

    • Students are able to analyse experimental research data, interpret results, and synthesize findings into well-structured scientific lab reports, demonstrating clarity, precision, and scientific rigor.

    • Students can demonstrate proficiency in laboratory workflows, including RNA extraction, gel electrophoresis, hybridization, and in vitro transcription, while adhering to good laboratory practices (GLP) and ensuring data reliability.

    • Students are able to critically discuss and evaluate the principles, applications, and limitations of molecular and RNA-based methods, demonstrating the ability to engage in evidence-based scientific discussions.

    6 SWS
    6 ECTS
    Medical Genetics Lab | UE

    Medical Genetics Lab | UE

    3 SWS   3 ECTS

    Inhalt

    • ​​Introduction to Genetic Analysis Methods: 
      - ​Explanation and practical implementation of various genetic analysis techniques. 

    • Reverse Transcriptase Polymerase Chain Reaction (RT-PCR): ​
      - Detection of leukemia-associated fusion transcripts. 

    • Gene Amplification and Hybridization Techniques: ​
      - Use of immobilized, allele-specific oligonucleotides for mutation detection in the cystic fibrosis gene. 

    • Real-Time Polymerase Chain Reaction (RT-PCR): 
      - ​Identification of BRAF and KRAS mutations in cancer cells. ​
      - Categorization of patients with poorer prognosis based on these mutations. 

    • Breast Cancer Clinical Classification: ​
      - Classification based on the expression of: ​
      - Estrogen and progesterone receptors (ER and PR). 
      - Human epidermal growth factor receptor 2 (HER2). 
      - Percentage of Ki67-positive cancer nuclei. 

    • Immunohistochemistry: ​
      - Analysis of selected factors. 
      - Examination of expression patterns in various molecular subtypes of breast cancer.​ 

    Lernergebnisse

    • Students are able to perform PCR, IHC, and oligonucleotide-based genetic analyses.

    • Students are able to analyse mutations in a specific CF gene and various oncogenes.

    • Students are able to discuss various genetic methods scientifically.

    Lehrmethode

    • The theoretical basis of each of the analyses conducted in the laboratory is explained in a preceding seminar. 
    • Students conduct genetic analyses according to detailed reports provided by the lecturers. 
    • Laboratory results are discussed with lecturers at the end of each unit and are summarized in a report whose structure corresponds to that of a scientific paper. 

    Prüfungsmethode

    Immanente Leistungsüberprüfung: presence, motivation, participation, practical skills (results), written report.

    Literatur

    • ​​​Lynn B. Jorde, John C. Carey, Michael J. Bamshad (2019): Medical Genetics. Elsevier; 6. Edition; Paperback ISBN: 9780323597371; eBook ISBN: 9780323596534 
    • ​Korf, Bruce R., Pyeritz, Reed E., Grody, Wayne W. (2019): Emery and Rimoin's Principles and practice of medical genetics and genomics: foundations. Academic Press,  ​ISBN 9780128125373 
    • ​Rivenbark AG, O'Connor SM, Coleman WB. Molecular and cellular heterogeneity in breast cancer: challenges for personalized medicine. Am J Pathol. 2013 Oct;183(4):1113-1124. doi: 10.1016/j.ajpath.2013.08.002. Epub 2013 Aug 27. PMID: 23993780; PMCID: PMC5691324.​​ 

    Unterrichtssprache

    Englisch

    3 SWS
    3 ECTS
    RNA Analysis Lab | UE

    RNA Analysis Lab | UE

    3 SWS   3 ECTS

    Inhalt

    • General RNA Handling Procedures 
    • ​Experiment 1: Northern Blot: This experiment investigates the differential expression of the GAL1 gene in yeast (Saccharomyces cerevisiae) grown in media containing either glucose or galactose. (glucose/galactose metabolism in yeast, RNA extraction from yeast, denaturing RNA agarose gel, RNA transfer, specific oligonucleotide hybridization, band detection, quantitative PCR) 
    • ​Experiment 2: Band Shift – EMSA: This experiment focuses on detecting the interaction between human Y RNA and the La protein using the Electrophoretic Mobility Shift Assay (EMSA), also known as a band shift assay. (in vitro transcription with T7 RNA polymerase, RNA purification, RNA folding, native poly-acrylamide gel electrophoresis, RNA staining using methylene blue, detection of RNP complexes) 
    • ​Experiment 3: RNA Stability: This experiment explores the inherent instability of RNA compared to DNA. (temperature dependence, pH dependence, RNAses)​ 

    Lernergebnisse

    • Students are able to perform Northern Blot analysis to investigate gene expression, including RNA extraction, gel electrophoresis, RNA transfer, and hybridization techniques.

    • Students are able to conduct Electrophoretic Mobility Shift Assays (EMSA) to detect RNA-protein interactions, including in vitro transcription, RNA purification, and native gel electrophoresis.

    • Students are able to analyse the stability of RNA under various conditions, understanding the effects of temperature, pH, and RNase activity on RNA integrity.

    • Students are able to apply quantitative PCR techniques to quantify RNA levels and assess differential gene expression in various experimental conditions.

    • Students are able to analyse gained research data and summarize their results in a scientific lab report.

    Lehrmethode

    ​Laboratory​

    Prüfungsmethode

    Immanente Leistungsüberprüfung: presence, motivation, participation, practical skills (results), written report.

    Literatur

    • ​Donald C. Rio, Manuel Ares, Jr., Gregory J. Hannon, Timothy W. Nilsen (2011): RNA: A labor-atory manual. Cold Spring Harbor Laboratory Press, ISBN 978-0-879698-91-1​ 

    Unterrichtssprache

    Englisch

    3 SWS
    3 ECTS
    Modul Molecular Immunology, Virology & Infection Biology

    Molecular Immunology, Virology & Infection Biology

    2 SWS   2 ECTS

    Lernergebnisse

    • Upon successful completion of the module, students are able to analyse the complex interactions between pathogens and the human host, including the molecular, cellular, and immunological mechanisms of host defense and pathogen colonization.

    • Students can describe pathogenetic mechanisms, virulence factors, and the cellular and systemic effects of infectious agents, as well as the clinical manifestations and immune responses in infectious diseases.

    • Students are able to identify and assess diagnostic tests, therapeutic antibodies, and treatment possibilities, understanding their concepts and applications for future innovations in diagnostics, drug development, and vaccines.

    • Students can discuss viral replication strategies, gene transfer technologies, and immuno-oncology therapies, critically evaluating their significance in molecular biology and medicine.

    • Students are able to demonstrate teamwork and knowledge-sharing skills, contributing effectively to scientific discussions and projects in virology, immunology, and infection biology within international and interdisciplinary contexts.

    • Students can critically evaluate current topics in virology and immunology research, including their applications in medicine, such as vaccine methodologies and novel therapeutic approaches.

    2 SWS
    2 ECTS
    Molecular Immunology | VO

    Molecular Immunology | VO

    2 SWS   2 ECTS

    Inhalt

    • ​​Fundamental concepts of immunity 

    • ​Immunologic tolerance and autoimmunity 

    • ​Immunity to microbes 

    • ​Transplantation immunology 

    • ​Immunity to tumours 

    • ​Hypersensitivity disorders 

    • ​Allergy 

    • ​Congenital and acquired immunodeficiencies 

    • ​Immunotherapy and immunological methods 

    • ​Aging of the immune system 

    • ​Active and passive vaccine methodology​ 

    Lernergebnisse

    • Students can discuss in-depth clinically relevant topics in human immunology.

    • After completing the course, the students can describe therapeutic procedures in immunoncology.

    • After completing the course, the students can explain vaccination methodology.

    • After completing the course, the students can discuss the creation of therapeutic antibodies.

    Lehrmethode

    Lecture

    Prüfungsmethode

    Endprüfung: Multiple choice questions and short assay answers; scoring system

    Literatur

    ​​Textbooks: 

    • ​Roitt's Essential Immunology, EAN / ISBN-:9781118415771

    • Janeway's Immunobiology10th ED

    Unterrichtssprache

    Englisch

    2 SWS
    2 ECTS
    Modul Molecular Pathology

    Molecular Pathology

    3 SWS   5 ECTS

    Lernergebnisse

    • Upon successful completion of the module, students are able to explain the definition, etiology, and pathogenesis of diseases, including the cellular and molecular mechanisms underlying pathological and systemic effects on organs and the organism.

    • Students can analyse and apply diagnostic techniques and therapeutic strategies, integrating systematics and nomenclature of diseases into real-world clinical and research contexts.

    • Students can describe molecular pathology, including aberrant signal transduction, malignancy of tumor cells, and hematopoietic stem cell involvement in hematological diseases.

    • Students are able to describe and compare signaling pathways in healthy and malignant cells, analyse aspects of cell migration and metastasis, and assess their implications in disease progression.

    • Students can discuss advanced technologies such as tissue printing, cell engineering, and organoid formation, and distinguish between normal and aberrant stem cell development.

    • Students can critically evaluate evolving diagnostic and therapeutic approaches, applying this understanding to specific diseases and innovative biomedical solutions.

    3 SWS
    5 ECTS
    General Pathology | VO

    General Pathology | VO

    1 SWS   2 ECTS

    Inhalt

    • ​​Principles of General Pathology, including the causes and development of pathological processes and diseases at cellular, tissue, and organism levels. 

    • Systemic/Special Pathology, including the courses of illness and symptoms, with their respective morphological alterations and clinicopathological findings. 

    • Systematics and Nomenclature of Diseases 

    • Diagnostic and Therapeutic Strategies and their application to pathological conditions.​ 

    Lernergebnisse

    • Students can discuss the definition, etiology, and pathogenesis of diseases, including the cellular and molecular mechanisms underlying pathological processes.

    • : Students can analyse and recognize the local and systemic effects of pathological processes on organs and the whole organism.

    • Students understand and can describe important diagnostic techniques and therapeutic strategies and can explain their application to specific diseases.

    • Students can describe and explain the systematics and nomenclature of diseases, integrating this knowledge into applied diagnostic and therapeutic contexts.

    • Students are able to critically evaluate and apply diagnostic and therapeutic approaches to real-world examples of diseases.

    Lehrmethode

    • Lecture 

    • Dialogue and discussion 

    Prüfungsmethode

    Endprüfung: Written exam

    Literatur

    • ​​​Kumar, Abbas & Aster (2017): Robbins Basic Pathology, Elsevier, 978-0323353175 

    • ​Damjanov (2011): Pathology for the Health Professions, Saunders, 978-1437716764​​ 

    Unterrichtssprache

    Englisch

    1 SWS
    2 ECTS
    Molecular Pathology | VO

    Molecular Pathology | VO

    2 SWS   3 ECTS

    Inhalt

    • ​​Cell movement of neoplastic cells 

    • ​Duality of cancer cell signalling 

    • ​Metastasis 

    • ​Molecular mechanisms of reproductive diseases 

    • ​Development and function of maternal breast, uterus and placenta 

    • ​Stem cells and organoids 

    • ​Cell engineering (tissue printing and organoids) 

    • ​Hematopoiesis, hematological diseases and their treatment​ 

    Lernergebnisse

    • Students can discuss the molecular pathology of diverse organs.

    • Students can discuss the malignancy of tumour cells as well as advanced insights about aberrant signal transduction in cancer cells and reproductive tissues.

    • Students can explain cell and tissue engineering as well as stem cell development in hematopoiesis and its involvement in the emergence of hematological diseases.

    • Students can describe dual processes of signal transduction in healthy and malignant cell types and explain aspects of cell migration and metastasis.

    • Students can describe evolving technologies in tissue printing, cell engineering, and organoid formation as well as differences in normal versus aberrant stem cell development.

    Lehrmethode

    • Lecture 

    • Dialogue and discussion 

    Prüfungsmethode

    Endprüfung: Written exam with open questions

    Literatur

    • ​​​Strachan & Read (2010): Human Molecular Genetics, Garland Science, 978-0815341499 

    • ​Weinberg (2013): The Biology of Cancer, Garland Science, 978-0815342205 

    • ​Additional references to primary research in the PowerPoint slides​​ 

    Unterrichtssprache

    Englisch

    2 SWS
    3 ECTS

    Modul Bioinformatics, In Silico Biology & AI

    Bioinformatics, In Silico Biology & AI

    3 SWS   3 ECTS

    Lernergebnisse

    • Upon successful completion of the module, students are able to perform and critically analyse bioinformatic tasks, such as sequence alignments, substitution matrix applications, and PSSM usage, while overcoming common tool-related challenges.

    • Students demonstrate proficiency in navigating and using biological databases, conducting advanced searches, filtering data, and extracting actionable insights from genomic, proteomic, and literature resources.

    • Students are able to utilize generative AI tools (e.g., ChatGPT) for scientific tasks, including creating and refining prompts, critically evaluating their outputs, and applying foundational knowledge of machine learning and AI algorithms to biological data analysis.

    • Students are able to analyse and predict protein features (e.g., conserved domains, secondary and tertiary structures) using relevant algorithms and visualization tools, integrating insights into functional and structural biology.

    • Students can design and simulate virtual cloning experiments, including plasmid mapping, virtual restriction digests, primer design, and result interpretation, addressing common experimental challenges.

    • Students are skilled in data management and analysis, using SQL commands to import, join, query, and export biological datasets, ensuring robust integration and interpretation of in silico results.

    3 SWS
    3 ECTS
    In silico Biology & AI | ILV

    In silico Biology & AI | ILV

    3 SWS   3 ECTS

    Inhalt

    • Protein function: Analysis and predictions of protein features, such as conserved domains & protein families, GO terms, transmembrane helixes, cellular sorting signals, glycosylation and working with the associated databases 

    • Protein structure: Prediction of protein secondary and tertiary structures using different algorithms and comparison of results and visualize 3D structures 

    • Virtual cloning: Plan cloning experiments, draw plasmid maps, simulate restriction digests and run virtual gels. 

    • Primer design: learn how to use primer design software and understand issues in primer design 

    • Introduction to Machine learning and AI algorithms and how to use them  

    Lernergebnisse

    • Students can analyse and predict protein features, including conserved domains, protein families, Gene Ontology (GO) terms, transmembrane helices, cellular sorting signals, and glycosylation sites, using relevant databases.

    • Students can predict and compare protein secondary and tertiary structures with different algorithms and visualize 3D structures.

    • Students can design virtual cloning experiments, including drawing plasmid maps, running virtual restriction digests, and interpreting results.

    • Students can apply primer design tools to develop primers while addressing common design challenges.

    • Students can use their foundational knowledge of machine learning and AI algorithms and apply them to analyse biological data.

    Lehrmethode

    • ​​​​Lectures with structured exercises 

    • ​Dialogue and discussion 

    • ​Group work 

    • ​Individual Project work​​​ 

    Prüfungsmethode

    Endprüfung: Final individual project work

    Literatur

    • ​​Pevsner, J. Bioinformatics and Functional Genomics 3rd Edition (Blackwell Pub, Chichester, West Sussex, UK; Hoboken, New Jersey, 2015). 
    • ​Foulds J., Witten I. H., Frank E., Hall M. A. & Pal C. J. Data Mining: Practical Machine Learning Tools and Techniques. (Morgan Kaufmann, 2025).​ 

    Unterrichtssprache

    Englisch

    3 SWS
    3 ECTS
    Modul Drug Development

    Drug Development

    2 SWS   3 ECTS

    Lernergebnisse

    • Upon successful completion of the module, students are able to explain the stages of clinical drug development, including trial design (e.g., RCTs, epidemiological studies), ethical considerations, and the regulatory framework established by EMEA, FDA, and ICH.

    • Students can rationalize and conceptualize screening library designs, evaluate synthetic and natural product pools, and assess the impact of these designs on drug development strategies and screening methodologies.

    • Students are able to classify and apply screening technologies, including high-throughput screening, target identification, hit-to-lead development, and lead optimization, using methods such as fluorescence and genotoxicity assays.

    • Students can discover, select, and engineer biologicals, including monoclonal antibodies, bispecific antibodies, nanobodies, and antibody-drug conjugates, along with methods for their production and quality control.

    • Students can critically assess scientific and ethical issues in clinical research and drug development, including the role of advanced therapy medicinal products (ATMPs), drug repurposing, and considerations for special populations in clinical trials.

    • Students can apply analytical characterization techniques for biologicals, including biosimilars, and evaluate emerging technologies and quality control methods used in their production and regulation.

    2 SWS
    3 ECTS
    Biologicals | VO

    Biologicals | VO

    1 SWS   2 ECTS

    Inhalt

    • ​​Concepts and approaches in biologicals discovery and s for analytical characterization 

    • ​Similarities and differences between biologicals and small molecule drugs  

    • ​Selection and engineering of monoclonal antibodies 

    • ​Concepts and approaches in analytical characterization of biologicals 

    • ​Development of biosimilars 

    • ​Various systems and approaches for industrial production of biologicals 

    • ​Antibody-drug conjugates and bispecific antibodies as new approaches in the field of biologicals​ 

    Lernergebnisse

    • Students can describe the basic concepts and approaches in biologicals discovery and development.

    • Students can explain selection and engineering of monoclonal antibodies.

    • Students can discuss the concepts and methods applied in biologics production and quality control.

    • Students can describe methods and approaches for analytical characterization of biologicals, including biosimilars.

    • Students can discuss the main emerging concepts in the area of biologicals like bispecific antibodies, nanobodies and antibody-drug conjugates.

    Lehrmethode

    Lecture

    Prüfungsmethode

    Endprüfung: A number of questions have to be answered that cover the LOs of the course

    Literatur

    • ​​Edward A. Greenfield (editor, 2014) Antibodies: A Laboratory Manual, Dana-Farber Cancer Institute, ISBN: 978-1-936113-81-1 

    • ​Gary Walsh (2013) Biopharmaceuticals: Biochemistry and Biotechnology, Wiley-Blackwell, ISBN: 978-1-118-68738-3 

    • ​Stefan Dubel & Janice M. Reichert (editors, 2014): Handbook of Therapeutic Antibodies, Wiley-Blackwell, ISBN: 978-3-527-32937-3 

    • ​> Khongorzul et al., Antibody-Drug Conjugates: A Comprehensive Review, Mol Cancer Res 2020​ 

    Unterrichtssprache

    Englisch

    1 SWS
    2 ECTS
    Drug Screening & Development Methodologies | VO

    Drug Screening & Development Methodologies | VO

    1 SWS   1 ECTS

    Inhalt

    • ​​Pharmacokinetic and Pharmacodynamic based structure optimisation 

    • ​Structure based Drug Development and Screening Library Design 

    • ​Principles of Combinatorial and Parallel Chemistry – Realization of Screening Libraries 

    • ​Targeted Drug Development Approaches 

    • ​Traditional Drug-Screening Approaches (incl. HTS) and their Limitations 

    • ​Fragment Based Screening and Modern Screening Perspectives 

    • ​Molecular Descriptors and Structure Pool Refinement 

    • ​Natural Product Isolation and Principles 

    • ​Principles of High-Resolution Mass Spectrometry and HRAM-Based Drug Screening 

    • ​Target identification & validation 

    • ​High Throughput Screening 

    • ​Hit to lead and lead optimization 

    • ​High Content Screening​ 

    Lernergebnisse

    • Students are able to rationalize and conceptualise impact of systematic structure variation in screening library design proposals (incl. synthetic vs natural product pools) on pharmacological test compound properties.

    • Students are able to classify applicability of different drug development and library realization approaches (i.a. synthetic combichem, parallel chemistry, fragment-type or natural product libraries) for specifically given development strategy basic requirements.

    • Students are able to correlate type and size of screening libraries and proposed success rate with the type of screening technology and development strategy, and performance potential of synthetic methodologies to create size and diversity of screening libraries.

    • Students understand target identification and validation. Including forward and reverse screening, target modulation strategies, and reverse docking approaches.

    • Students can explain high throughput screening and instrumentation; Hit to Lead & Lead Optimization, High Content Screening including Target Based Assay Development (fluorescence/luminescence assays, genotox & mutagenic assays etc.)

    Lehrmethode

    • ​​Lecture,  

    • ​Self-Study,  

    • ​Other: Application and Case Study based learning​ 

    Prüfungsmethode

    Endprüfung: Written exam, i.a. multiple choice, cloze, term assignment

    Literatur

    • ​​R.B. Silverman The Organic Chemistry of Drug Design and Drug Action, Elsevier 

    • ​R.J.P.Cannell (ed.) Natural Product Isolation, Methods in Biotechnology Vol.4 

    • ​Wanner, Höfner (Eds.), Mass Spectrometry in Medicinal Chemistry – Applications in Drug Discovery, 2007. Wiley-VCH 

    • ​Richard B van Breemen, Mass Spectrometry and Drug Discovery, 2003 Wiley&Sons 

    • ​Original Publications (Varying) for further reading in applications and case studies 

    • ​Wang Y, Jeon H. 3D cell cultures toward quantitative high-throughput drug screening. Trends Pharmacol Sci. 2022 Jul;43(7):569-581. doi: 10.1016/j.tips.2022.03.014. Epub 2022 Apr 30. PMID: 35504760. 

    • ​Floris M, Olla S, Schlessinger D, Cucca F. Genetic-Driven Druggable Target Identification and Validation. Trends Genet. 2018 Jul;34(7):558-570. doi: 10.1016/j.tig.2018.04.004. Epub 2018 May 23. PMID: 29803319; PMCID: PMC6088790.​ 

    Unterrichtssprache

    Englisch

    1 SWS
    1 ECTS
    Modul Electives 1

    Electives 1

    2 SWS   2 ECTS

    Lernergebnisse

    • Upon successful completion of the module, students are able to analyse, interpret, and critically appraise complex scientific research papers from high-quality journals in either of RNA research, drug discovery, or molecular immunology, identifying significant findings, potential weaknesses, and limitations.

    • Students can present and discuss the background, methodologies, key findings, and conclusions of scientific publications in a peer-group setting, fostering collaborative learning and evidence-based debate.

    • Students can discuss in-depth current and emerging topics in either RNA research, drug discovery, or molecular immunology, developing the ability to identify high-quality sources, evaluate their significance, and contribute informed opinions in academic discussions.

    • Upon successful completion of the module, students are able to explain the principles of targeted and personalized therapies, including the use of biomarkers, kinase inhibitors, and hormone receptor activation, as well as the molecular mechanisms of oncogenes, tumorigenesis, and immunotherapy.

    • Students can identify and compare different vaccine types, understand the steps in vaccine design and production (from antigen selection to industrialization), and evaluate challenges in GMP manufacturing and vaccine policy. Digitalization ☒ Internationalisation☒ Ethics☐ Sustainability

    • Students can discuss current trends in drug discovery and vaccinology, critically assessing historical and emerging approaches, including mRNA vaccines, adjuvants, and the impact of herd immunity and vaccine hesitancy on public health.

    2 SWS
    2 ECTS
    Electives 1 (1 ECTS nach Wahl)
    Drug Discovery Seminar | SE

    Drug Discovery Seminar | SE

    1 SWS   1 ECTS

    Inhalt

    • ​​​Course Focus: Research papers from high-quality, internationally respected journals in the field of Drug Discovery. 

    • Student Activities: ​
      - Independently read assigned research papers. 

    • Seminar Format: Peer-group discussions. 

    • Discussion Topics: ​
      - Present the background, key findings, and conclusions of the papers. 
      - ​Analyse the strengths and weaknesses of the publications. 
      - ​Propose suggestions for improvements.​​ 

    Lernergebnisse

    • Students can discuss in-depth current and significant topics in the field of Drug Discovery through the study of high-quality research papers.

    • Students are able to understand, summarize, interpret, and critically appraise complex scientific research papers from internationally respected journals.

    • Students are able to identify appropriate and valid sources of high-quality research publications and evaluate their significance in the field.

    • Students are able to express their own opinions in peer-group discussions and debate the merits and drawbacks of research projects.

    • Students are able to more critically analyse and evaluate scientific literature.

    Lehrmethode

    ​Dialogue and discussion​ 

    Prüfungsmethode

    Immanente Leistungsüberprüfung: The presentation and discussion of research papers will be evaluated.

    Literatur

    • Recent, important publications from scientific journals

    Unterrichtssprache

    Englisch

    1 SWS
    1 ECTS
    Molecular Immunology Seminar | SE

    Molecular Immunology Seminar | SE

    1 SWS   1 ECTS

    Inhalt

    • ​​​Reading and understanding of research papers from internationally respected high-quality journals from the field of Molecular Immunology  

    • ​Presenting of background, the most important findings and the conclusions of scientific publications 

    • ​Discussions of the strengths and the weaknesses of publications  

    • ​Suggesting how research papers could be improved​​ 

    Lernergebnisse

    • Students can discuss in-depth “hot” topics from the internationally researched field of Molecular Immunology.

    • Students understand and can discuss complex scientific research papers taken from internationally respected high-quality journals from the field of Molecular Immunology.

    • Students can summarize, interpret and appraise the published data.

    • Students can identify outstanding research findings, but also possible weaknesses and limitations in scientific publications.

    • Students can express their own opinions about a publication and can discuss this with their peer group as well as established research scientists.

    Lehrmethode

    • Lecture 

    • Dialogue and discussion 

    • Individual work 

    • Group work 

    • Supervised distance learning 

    • Self-study 

    Prüfungsmethode

    Immanente Leistungsüberprüfung: Assessment of active participation in discussions of scientific publications

    Assessment of quality of slides that summarize a scientific publication

    Assessment of leading a discussion about on scientific publications

    Literatur

    • ​Recent, important publications from scientific journals​ 

    Unterrichtssprache

    Englisch

    1 SWS
    1 ECTS
    RNA Seminar | SE

    RNA Seminar | SE

    1 SWS   1 ECTS

    Inhalt

    • ​​Course Content: Research papers from high-quality, internationally respected journals in RNA research. 

    • Student Activities: 
      - ​Select topics of interest. ​
      - Independently read assigned research papers. 

    • Seminar Format: Peer-group discussions. 

    • Discussion Focus: ​
      - Background, key findings, and conclusions of the papers. 
      - Strengths and weaknesses of the publications. ​
      - Suggestions for potential improvements.​ 

    Lernergebnisse

    • Students are able to critically analyse and interpret research papers from high-quality journals in the field of RNA research.

    • Students are able to effectively present and discuss the background, key findings, and conclusions of scientific publications in a peer-group setting.

    • Students are able to effectively present and discuss the background, key findings, and conclusions of scientific publications in a peer-group setting.

    Lehrmethode

    • ​​Seminar 

    • ​Topic preparation and peer-group discussion​ 

    Prüfungsmethode

    Immanente Leistungsüberprüfung: Participation in discussion, Preparation of a specific topic

    Literatur

    • Recent, important publications from scientific journals

     

    Unterrichtssprache

    Englisch

    1 SWS
    1 ECTS
    Electives 2 (1 ECTS nach Wahl)
    Therapeutic Strategies | VO

    Therapeutic Strategies | VO

    1 SWS   1 ECTS

    Inhalt

    • ​​Signalling Pathways 

    • ​Molecular biology of oncogenes and tumorigenesis 

    • ​Basic concepts of personalized cancer therapy and targeted therapy including usage of biomarkers 

    • ​Different types of immunogenic cell death and underlying therapeutic concepts 

    • ​Kinases as therapeutic targets in oncology and other therapeutic areas​ 

    Lernergebnisse

    • Students can describe kinases as therapeutic targets in oncology and other therapeutic areas.

    • Students can discuss modern concepts in drug discovery.

    • Students can explain the principles of activation of hormone receptors.

    • Students can describe the basic concepts of personalized cancer therapy and targeted therapy including usage of biomarkers.

    • Students can discuss the molecular biology of oncogenes, tumorigenesis and immunotherapy.

    Lehrmethode

    • ​​Lecture 

    • ​Dialogue and discussion 

    • ​Problem-based learning​ 

    Prüfungsmethode

    Endprüfung: Written exam + short oral presentation

    Literatur

    • ​​R.A. Weinberg (2007): The Biology of Cancer, Garland Science - Taylor & Francis Group, ISBN: 0-8153-4078-8 

    • ​H.P. Rang et al. (2012): RANG and DALE´S Pharmacology, Elsevier, ISBN: 13-978-1-4377-1933-8 

    • ​T. M. Devlin et al. (2010): Textbook of Biochemistry with Clinical Correlations, ISBN: 978-0-470-28173-4 

    • ​L.H. Butterfield et al. (2017): Cancer Immunotherapy Principles and Practice, Demos Medical Publishing, ISBN: 978-1-620-70097-6​ 

    Unterrichtssprache

    Englisch

    1 SWS
    1 ECTS
    Vaccine Development | VO

    Vaccine Development | VO

    1 SWS   1 ECTS

    Inhalt

    • ​​History of vaccines 

    • ​Vaccine development from ‘laboratory to market’ 

    • ​Deep dive in specific vaccines encompassing one example each but not limited to  inactivated, attenuated, conjugated, VLP vaccines.​ 

    Lernergebnisse

    • Students can identify different types of vaccines, compare live attenuated, inactivated, subunit, conjugate, and mRNA vaccines and understand differences in approaches.

    • Students can discuss historical and current trends in vaccinology.

    • Students can outline the steps in vaccine design, from antigen selection to preclinical testing, as well as explain the role of adjuvants.

    • Students can describe the challenges of GMP vaccine production, including concept of clinical trial manufacturing, upscaling and industrialization.

    • Students can explain the vaccine concepts like epidemiology, vaccine effectiveness, herd immunity, vaccine hesitancy, vaccine policy etc..

    Lehrmethode

    • ​​Lecture 

    • ​Dialogue and discussion 

    • ​Group work 

    • ​Research based learning​ 

    Prüfungsmethode

    Endprüfung: Written exam

    Literatur

    • ​​"Plotkin's Vaccines" (Edited by Stanley A. Plotkin, Walter A. Orenstein, Paul A. Offit, and Kathryn Edwards) 

    • ​Vaccines for Emerging Infectious Diseases" by Sarah E. Clift and colleagues (Nature Reviews Drug Discovery, 2021) 

    • ​The Vaccine book 2nd edition 2016. Edited by Barry R. Bloom and Paul-Henri Lambert​ 

    Unterrichtssprache

    Englisch

    1 SWS
    1 ECTS
    Modul Entrepreneurship

    Entrepreneurship

    4 SWS   4 ECTS

    Lernergebnisse

    • Upon successful completion of the module, students are able to analyse businesses from a strategic perspective, provide actionable recommendations for improvement, and understand how strategies are embedded within management systems.

    • Students can differentiate between management and leadership, critically evaluate various leadership styles, and apply these insights to address specific challenges in their respective industries or academic fields.

    • Students are able to assess opportunities and processes for securing intellectual property rights, understand the value of patents, and develop global protection strategies tailored to their business or research assets, with consideration for international agreements.

    • Students can write scientific reports, preparing and delivering presentations, and designing scientific posters, effectively conveying research outcomes to diverse audiences.

    • Students can work collaboratively in international and culturally diverse teams to design and execute projects, reflecting on teamwork experiences to enhance communication, conflict resolution, and problem-solving skills.

    • Students can critically evaluate their own and their peers’ communication practices, identifying strengths and areas for development, while gaining practical skills in negotiation, argumentation, and persuasive communication applicable in both professional and academic contexts.

    4 SWS
    4 ECTS
    IP, Patent Law | VO

    IP, Patent Law | VO

    1 SWS   1 ECTS

    Inhalt

    • ​​What is Intellectual Property and why is it important? There is more than inventions! 
    • ​Which forms of protection of intellectual property are available? – trademark, industrial design, copyright, utility model, complementary protection certificate, patent 
    • ​What is a patent? 
      ​– effects of a patent ​
      – what can be patented and what is excluded from patent protection? ​
      – what are the prerequisites for patent application/protection?  ​
      – How to define an inventor? Rights and obligations of employee inventors 
    • ​From application to patent grant 
      ​– structure of a patent application ​
      – application and granting processes 
      - ​protective reach and duration 
      ​– legal measures ​
      – fees and costs ​
      – where to apply for a patent 
    • ​Rights of patent owners and legal measures 
    • ​International agreements (EP, PCT), important national differences 
    • ​Biopatents – legal framework, important decisions 
    • Freedom to Operate  
    • Espacenet and other search tools and how to use it for patent and other IP research 
    • Patent lawyer - the profession 
    • Fundamentals in copyright 
    • Fundamentals in industrial design and trademark 
    • What are Trade Secrets? 
    • IP-Strategies and decision making 
    • Rough overview about important agreements– MTAs, CDAs, licensing contracts​ 

    Lernergebnisse

    • Students can describe opportunities and processes of creating national and international intellectual property rights.

    • Students can explain the value of intellectual property and applicable instruments for protection.

    • Students can discuss the most relevant (international) agreements governing intellectual property rights.

    • Students can describe the process from patent application to grant and rights conferred by a patent to the patent owner.

    • Students are able to create and decide on global protection strategies of their assets, specifically in view of future partnering and financing.

    Lehrmethode

    ​Lectures with interactive elements and discussions, actual cases will be discussed in more detail, individual case study and presentation of learnings​ 

    Prüfungsmethode

    Endprüfung: Written exam

    Literatur

    Unterrichtssprache

    Englisch

    1 SWS
    1 ECTS
    Scientific Communication II | ILV

    Scientific Communication II | ILV

    2 SWS   2 ECTS

    Inhalt

    ​​This course is designed to enhance students' communication, teamwork, and critical thinking skills through a series of reflective, practical, and diverse activities. Students will engage in various exercises that emphasize the importance of clear communication, peer feedback, and working in culturally diverse teams: 

    • ​Students reflect on teamwork experiences and the significance of clear, transparent communication. 

    • ​They evaluate their and their peers’ personal communication skills, considering the audience and context. 

    • ​They collaborate in small international and culturally diverse teams and prepare and deliver research project presentations. 

    • ​They design and present scientific posters summarizing research projects. 

    • ​They write a comprehensive scientific report as preparation for the master’s thesis. 

    • ​They gain practical exposure to the dynamics of argumentation and persuasive communication. 

    • ​They assess their personal debating capabilities, identifying strengths and areas for improvement. 

    • ​They analyse the language, behaviour, and strategies of experienced debaters. 

    • ​They learn examples of effective communication and argumentation practices by debating. 

    • ​They assess their personal debating capabilities, identifying strengths and areas for improvement. 

    • ​They learn to write effectively in a scientific style. 

    • ​They rate their proficiency in valuable skills such as report writing, presentations, conflict resolution, problem-solving, negotiation, interview skills, and committee work. 

    • ​They gain experience in analysing arguments, evaluating evidence, and presenting persuasive arguments.​ 

    Lernergebnisse

    • Students can reflect on their teamwork experiences and the significance of clear, transparent communication, both individually and within diverse teams.

    • Students can collaborate effectively in small international and culturally diverse teams to prepare and deliver research project presentations and design scientific posters.

    • Students can write comprehensive scientific reports and concise summaries of their research, demonstrating proficiency in scientific writing and preparation for their master’s thesis.

    • Students can analyse and apply effective communication and argumentation practices, gaining practical exposure to the dynamics of argumentation and persuasive communication.

    • Students can critically evaluate their own and their peers’ communication skills, identify strengths and areas for improvement, and rate their proficiency in valuable transferable skills such as report writing, presentations, conflict resolution, problem-solving, negotiation, and interview skills.

    Lehrmethode

    • ​​​Guided self-reflection 

    • ​Peer-feedback 

    • ​Lecture with structured exercises 

    • ​Dialogue and discussion 

    • ​Individual work 

    • ​Collaborative learning 

    • ​Supervised distance learning 

    • ​Self-study 

    • ​Blended learning 

    • ​Problem-based learning 

    • ​Project work 

    • ​Public Speaking and Presentation 

    • ​Research-based learning​​ 

    Prüfungsmethode

    Immanente Leistungsüberprüfung: Each task is assessed

    Literatur

    • ​​​McCarthy & O’Dell (2016): Academic Vocabulary in Use, Cambridge University Press, 978-1107591660 

    • ​Skern (2019): Writing Scientific English: A Workbook, 3rd Ed., UTB, Facultas, ISBN-13: 978-3825250669 

    • ​Current scientific literature​​ 

    Unterrichtssprache

    Englisch

    2 SWS
    2 ECTS
    Strategic Business Management | ILV

    Strategic Business Management | ILV

    1 SWS   1 ECTS

    Inhalt

    ​​Select a use case from companies/startups of the Life Sciences vertical and analyse the following business strategies of the “adopted company”: 

    • ​Vision, Mission, Objectives 

    • ​Overall business strategy 

    • ​Product strategy 

    • ​Financial strategy 

    • ​HR strategy 

    • ​Risk management 

    ​Use strategy tools to structure the analytical work, e.g.: 

    • ​SWOT analyses 

    • ​Porter Five Forces Tool 

    • ​Business Model Canvas 

    ​Present the results as a group: 

    • ​1 interim presentation 

    • ​1 final presentation ​ 

    Lernergebnisse

    • Students can analyse an existing company from strategic perspectives and provide relevant suggestions for improvement options.

    • Students can discuss the elements of a strategy to be implemented, embedded in management systems.

    • Students can understand and describe the differences between management and leadership. They can analyse different leadership (management) styles, their characteristics and are able to map findings to specific needs of their branches (industry, academia).

    Lehrmethode

    • ​​Lecture 

    • ​Dialogue and discussion 

    • ​Group work 

    • ​Supervised distance learning 

    • ​Project work​ 

    Prüfungsmethode

    Endprüfung: Presentation of the group work, documentation of the group work either in Word or Powerpoint

    Literatur

    • ​​Michael E. Porter (2004): Competitive Strategy: Techniques for Analyzing Industries and Competitors. Free Press, 978-0743260886 

    Unterrichtssprache

    Englisch

    1 SWS
    1 ECTS
    Modul Genetics, Gene Therapy & Precision Medicine

    Genetics, Gene Therapy & Precision Medicine

    2 SWS   2 ECTS

    Lernergebnisse

    • Upon successful completion of the module, students are able to explain the mechanisms of gene regulation and molecular processes across DNA, RNA, and protein levels, including transcriptional, post-transcriptional, and epigenetic regulation in prokaryotic and eukaryotic systems.

    • Students are able to select and evaluate appropriate molecular methods and analytical panels for diagnosing genetic diseases, assessing their applications, limitations, and reliability in precision medicine and medical genetics.

    • Students are able to describe the structural diversity and catalytic roles of RNA, including its modifications, processing mechanisms, and their impact on translation, gene expression, and disease pathology.

    • Students are able to critically evaluate gene therapy modalities and RNA-based therapeutic applications, understanding their clinical phases, limitations, and potential for treating genetic disorders and complex diseases.

    • Students can apply the principles of precision medicine by integrating genetic and biomarker data to develop personalized diagnostic and treatment strategies for patients.

    • Students are able to analyse and discuss the ethical, clinical, and commercial aspects of advanced therapies and precision medicine, considering their opportunities, limitations, and impact on healthcare systems and society.

    2 SWS
    2 ECTS
    Gene Therapy | VO

    Gene Therapy | VO

    1 SWS   1 ECTS

    Inhalt

    • ​​Basic concepts and modalities (viral / non-viral) in gene therapy  
    • ​Choosing the appropriate vector for treatment: Ad-vantages and disadvantages  
    • ​Expression systems for viral vector production  
    • ​Challenges in clinical manufacturing of gene therapy products  
    • ​Fundamentals of formulation for gene therapy products  
    • ​Delivering the gene into patients: Administration routes  
    • ​Clinical trials for gene therapy and ethical considerations  
    • ​Successes, failures, and hopes
    • Regulatory as-pects to consider
    • ​Recent history: Approved therapies
    • The future of gene therapy​ 

    Lernergebnisse

    • Students can explain the various modalities of gene therapy and understand both its opportunities and limitations based on their solid academic foundation.

    • Students can discuss potential analytical panels for different modalities.

    • Students can decide which therapies are the most promising and can describe how these can be applied to patients.

    • Students can explain the clinical phases necessary for the commercialization of gene therapy drugs.

    Lehrmethode

    ​​Lecture with structured exercises​ 

    For example: 

    • Lecture 

    • Lecture with structured exercises 

    • Dialogue and discussion 

    • Individual work 

    • Group work 

    • Supervised distance learning 

    • Self-study 

    • Blended learning 

    • Flipped classroom 

    • Problem-based learning 

    • Project work 

    • Research-based learning 

    • Other methods (please specify) 

    Prüfungsmethode

    Endprüfung: Written exam

    Literatur

    • Tools and Applications in Gene Therapy. Tripti Sahu. 2018. ISBN 9781773612430 
    • Regulatory Aspects of gene Therapy and Cell Therapy Products. Maria Christina Galli, 2016.  ​ISBN 9783319357294 
    • Lecture notes and material provided by lecturer 

    Unterrichtssprache

    Englisch

    1 SWS
    1 ECTS
    Molecular Precision Medicine | VO

    Molecular Precision Medicine | VO

    1 SWS   1 ECTS

    Inhalt

    • Exploring the Human Genome
    • The Evolution of Precision Medicine
    • Precision Medicine: A Paradigm Shift from Conventional Therapies
    • The Interplay Between Genetics and Precision Medicine
    • Precision Medicine in Disease Management
    • Innovations in the Development of Precision Medicine
    • The Future Landscape of Precision Medicine

    Lernergebnisse

    • Students can describe the fundamental principles and essential concepts of precision medicine.

    • Students can discuss the significance of genetics and biomarkers in shaping precision medicine.

    • Students can explain how precision medicine is applied to diagnose and treat diseases.

    • Students are able to explain the role in clinical drug development and practical applications in healthcare.

    • Students can discuss career opportunities and the growing precision medicine market.

    Lehrmethode

    ​​Lecture with structured exercises​ 

    For example: 

    • Lecture 

    • Lecture with structured exercises 

    • Dialogue and discussion 

    • Individual work 

    • Group work 

    • Supervised distance learning 

    • Self-study 

    • Blended learning 

    • Flipped classroom 

    • Problem-based learning 

    • Project work 

    • Research-based learning 

    • Other methods (please specify) 

    Prüfungsmethode

    Endprüfung: Written exam

    Literatur

    • ​​​Precision Medicine: Tools and Quantitative Approaches. Hans-Peter Deigner and Matthias Kohl. 2018. ISBN-10 ‏ : :012805364X 
    • ​Genomic and Precision Medicine: Oncology. Ginsburg, Willard, 2022. ​ISBN 9783319357294 
    • ​Lecture notes and material provided by lecturer​ 

    Unterrichtssprache

    Englisch

    1 SWS
    1 ECTS
    Modul Molecular Immunology, Virology & Infection Biology

    Molecular Immunology, Virology & Infection Biology

    3 SWS   3 ECTS

    Lernergebnisse

    • Upon successful completion of the module, students are able to analyse the complex interactions between pathogens and the human host, including the molecular, cellular, and immunological mechanisms of host defense and pathogen colonization.

    • Students can describe pathogenetic mechanisms, virulence factors, and the cellular and systemic effects of infectious agents, as well as the clinical manifestations and immune responses in infectious diseases.

    • Students are able to identify and assess diagnostic tests, therapeutic antibodies, and treatment possibilities, understanding their concepts and applications for future innovations in diagnostics, drug development, and vaccines.

    • Students can discuss viral replication strategies, gene transfer technologies, and immuno-oncology therapies, critically evaluating their significance in molecular biology and medicine.

    • Students are able to demonstrate teamwork and knowledge-sharing skills, contributing effectively to scientific discussions and projects in virology, immunology, and infection biology within international and interdisciplinary contexts.

    • Students can critically evaluate current topics in virology and immunology research, including their applications in medicine, such as vaccine methodologies and novel therapeutic approaches.

    3 SWS
    3 ECTS
    Infection Biology | VO

    Infection Biology | VO

    2 SWS   2 ECTS

    Inhalt

    • ​​​Presentation of the complex interactions between pathogens and the human host  

    • ​Explanation of the molecular, cellular and immunological aspects of the interaction between pathogens and the human host 

    • ​Discussion of the strategies developed by bacteria, viruses, fungi and parasites to colonize, invade, survive, reproduce and spread  

    • ​Presentation of the cellular and systemic effects of the host, the host's defence mechanisms and the clinical manifestations of the infectious diseases  

    • ​Explanation of diagnostic tests and antimicrobial and antiviral treatment possibilities  

    • ​Presentation of the concepts behind the development of novel diagnostic tools, drugs and vaccines for future prevention and therapy of infectious diseases​​ 

    Lernergebnisse

    • Students can describe the complex biological interactions between pathogens and the human host.

    • Students can describe the mechanisms by which viruses, bacteria, fungi and parasites colonise their hosts and cause diseases and they understand the molecular, cellular and immunological aspects of host-pathogen interaction.

    • Students can discuss virulence and pathogenicity factors of the different pathogens.

    • Students can explain the cellular and systemic effects of the host, the host’s defence mechanisms, the clinical manifestations and clinical pictures.

    • Students understand and can describe the most important diagnostic tests and treatment possibilities, understand the concepts behind the development of novel diagnostic tools, drugs and vaccines for future prevention and therapy of infectious diseases.

    Lehrmethode

    • Lecture 

    • Dialogue and discussion 

    • Self-study 

    Prüfungsmethode

    Endprüfung: Written exam

    Literatur

    • ​​​Madigan MT, Martinko JM, Bender KS, Buckley DH, Stahl DA (2015): Brock Biology of Microorganisms, Pearson, 978-0321897398 

    • ​Abbas AK, Lichtman AH, Pillai S (2017): Cellular and Molecular Immunology, Elsevier Saunders, 978-0323479783 

    • ​Murphy K, Weaver C (2016): Janeway's Immunobiology, Garland Science, 978-0815345053 

    • ​Flint SJ, Racaniello VR, Rall GF, Skalka AM, Enquist LW (2015): Principles of Virology, ASM Press, 978-1555819514 

    • ​Original publications and review articles​​ 

    Unterrichtssprache

    Englisch

    2 SWS
    2 ECTS
    Molecular Virology | VO

    Molecular Virology | VO

    1 SWS   1 ECTS

    Inhalt

    • Replication cycle of important virus families 

    • Pathogenetic mechanisms of important viruses 

    • Anti-viral strategies 

    • Importance of viruses in molecular biology and medicine 

    Lernergebnisse

    • Students can explain the most important viruses and their replication strategies.

    • Students can discuss the underlying pathogenetic mechanisms of the most important viruses.

    • Students can explain current topics in virus research and their applications in several fields of molecular biology and medicine (e.g. viruses as gene transfer vehicles).

    • Students can work in teams and share their scientific knowledge advantage in the field of virology in international scientific teams.

    Lehrmethode

    • Lecture 

    • Dialogue and discussion 

    • Self-study 

    Prüfungsmethode

    Endprüfung: Written exam

    Literatur

    • Wagner, Hewlett, Bloom & Camerini (2007): Basic Virology, Wiley-Blackwell, ISBN-13: 978-1405147156 

    Unterrichtssprache

    Englisch

    1 SWS
    1 ECTS
    Modul Stem Cell, Signalling & Pathology Labs

    Stem Cell, Signalling & Pathology Labs

    9 SWS   9 ECTS

    Lernergebnisse

    • Students are able to apply the feedback received from peers and supervisors to refine their research projects, enhancing the overall quality and feasibility of their master's thesis.

    • Students can perform state-of-the-art techniques such as Western blot analysis, fluorescence microscopy, histological staining, and GFP/luciferase reporter assays to investigate cell signaling, morphology, and function.

    • Students are able to determine cellular and chromosomal characteristics, analyse cell “stemness,” identify specific cell types in histological and hematologic samples, and assess proliferation, apoptosis, and viability in response to experimental manipulations.

    • Students can integrate multiple experimental approaches, including pharmacological treatments, cell migration assays, and dynamic protein localization studies, to develop a comprehensive understanding of cell signaling pathways and cellular functions.

    • Students are able to record, analyse, and document experimental results in compliance with scientific standards, safety guidelines, and legal requirements, ensuring accurate and reliable communication of findings.

    • Students can critically assess and interpret experimental data from cellular models, including changes in morphology, gene expression, and functional assays, to draw conclusions about cellular processes and signaling pathways in health and disease.

    9 SWS
    9 ECTS
    Molecular Pathology Lab | UE

    Molecular Pathology Lab | UE

    3 SWS   3 ECTS

    Inhalt

    • ​​Advanced cell culture 

    • ​Cell morphology and identity 

    • ​Cell motility 

    • ​Cell proliferation 

    • ​Apoptosis  

    • ​Cell differentiation 

    • ​Action of conventional and directed cancer therapeutics​ 

    Lernergebnisse

    • Students are able to analyse histological sections, recognize cell types in these tissues and explain their structure and anatomical features.

    • Students are able to cultivate tumour cells, treat them with chemical drugs and interpret changes in cell morphology, growth, migration and invasion.

    • Students are able to stain tissue sections for specific marker proteins for proliferation and apoptosis and analyse their expression in specific cell types.

    • Students are able to identify hematologic cells in the blood and to discriminate the different cell types.

    • Students are able to independently grow and propagate different cell types and perform various techniques for further analyses such immunofluorescence, cell counting, migration, invasion and viability assays.

    Lehrmethode

    • Lecture with structured exercises 

    • Dialogue and discussion 

    • Group work 

    Prüfungsmethode

    Immanente Leistungsüberprüfung: Written protocol in scientific format

    Literatur

    • ​​Scripts written by the presenters and web-based tutorials will be provided.
    • Histology and anatomy textbooks will be provided in the lab during the course.​​ 

    Unterrichtssprache

    Englisch

    3 SWS
    3 ECTS
    Signalling Pathways Lab | UE

    Signalling Pathways Lab | UE

    3 SWS   3 ECTS

    Inhalt

    • ​​​Application of methods for the manipulation and the analysis of signalling pathways in cell culture, leading to a detailed knowledge of specific pathways.  

    • ​Applied methods are: 
      - ​transient transfection in cell culture,
      - reporter constructs with GFP and luciferase,  
      - ​overexpression of activators/repressors (including RNAi),  
      ​- Western analysis of cellular extracts,  
      ​- analysis of phosphorylation,  
      ​- fluorescence microscopy of labelled proteins and  
      ​- pharmacologic manipulation of the pathways.​​ 

    Lernergebnisse

    • Students are able to apply methods for manipulating signalling pathways in cell culture, including transient transfection, overexpression of activators/repressors and RNAi.

    • Students are able to perform various techniques for analysing signalling pathways, such as reporter constructs with GFP and luciferase, Western blot analysis and phosphorylation analysis.

    • Students can use fluorescence microscopy to visualize labelled proteins and analyse their localization and dynamics within cells.

    • Students are able to apply pharmacologic agents to manipulate signalling pathways and assess their effects on cellular functions.

    • Students can integrate multiple experimental approaches to gain a comprehensive understanding of specific signalling pathways.

    Lehrmethode

    Practical course with independent performance of the experiments. 

    Prüfungsmethode

    Immanente Leistungsüberprüfung: Entry exam on the computer (multiple choice), evaluation of performance in the lab, protocol

    Literatur

    • ​​​Lewis Wolpert, Cheryll Tickle, Alfonso Martinez Arias (2015), Principles of Development. Oxford University Press, ISBN-13: 978-0198709886 

    • ​Bruce Alberts, Alexander Johnson, Julian Lewis, David Morgan, Martin Raff, Keith Roberts, Peter Walter (2014): Molecular Biology of the Cell. Garland Science, ISBN-13: 978-0815344643 

    • ​> Martin Beckerman (2009): Cellular Signaling in Health and Disease. Springer, ISBN-13: 978-0387981727​​ 

    Unterrichtssprache

    Englisch

    3 SWS
    3 ECTS
    Stem Cells Lab | UE

    Stem Cells Lab | UE

    3 SWS   3 ECTS

    Inhalt

    • ​​The course teaches the fundamentals of murine embryonic stem cell (ESC) culture and practical applications.  

    • ​Different cultivation possibilities for ESC and the control of the stability of the cultures in the undifferentiated state will be learned (morphological analysis, proliferation analysis, alkaline phosphatase assay).  

    • ​Targeted differentiation using the embryoid body (EB) model will be accomplished and experimental investigations will be carried out on how different inhibitors or activators influence differentiation.  

    • ​PCR and karyotyping will be used to further characterize the ESCs used in this course. 

    • ​Indirect immunofluorescence microscopy will be employed to investigate the stemness characteristics of the cells.​ 

    Lernergebnisse

    • Students are able to culture murine pluripotent stem cells.

    • Students can describe how to generate embryoid bodies.

    • Students can determine the sex and the chromosome set of cells.

    • Students can investigate the stemness characteristics of the cells.

    • Students can record and document results and can behave correctly in accordance with the relevant safety guidelines and legal requirements when handling chemical and biological substances.

    Lehrmethode

    ​Practical laboratory course, group work, discussion, exercises, presentations from students.​ 

    Prüfungsmethode

    Immanente Leistungsüberprüfung: Continuous assessment, written protocol and final presentation with discussion

    Literatur

    • ​​​Lanza, Robert P. et al. (2013): Handbook of Stem Cells, Vol 1, Elsevier Amsterdam, 978-012385942 

    • ​Elling, U. et al. Forward and Reverse Genetics through Derivation of Haploid Mouse Embryonic Stem Cells. Cell Stem Cell, 2011 Dec 2;9(6):563-74. doi: 10.1016/j.stem.2011.10.012.  

    • ​Elling, U. et al. A reversible haploid mouse embryonic stem cell biobank resource for functional genomics. Nature. 2017 Oct 5;550(7674):114-118. doi: 10.1038/nature24027.​​ 

    Unterrichtssprache

    Englisch

    3 SWS
    3 ECTS
    Modul Stem Cells & Signaling

    Stem Cells & Signaling

    2.5 SWS   4 ECTS

    Lernergebnisse

    • Upon successful completion of the module, students are able to explain the principles of stem cell biology, including the definitions, characteristics, and hallmarks of totipotent and pluripotent states, as well as the cellular mechanisms sustaining pluripotency.

    • Students can design experiments to test pluripotency in stem cells, apply techniques for analyzing signaling pathways, and utilize these approaches to study stem cell development, differentiation, and organoid formation.

    • Students are able to evaluate the advances in organoid biology, including their use in modeling human-specific developmental processes and diseases, and assess the translational potential of these systems in clinical and research contexts.

    • Students are able to identify and describe major signaling pathways (e.g., MAP kinase, GPCR, Wnt, and TGF-β), explain their roles in regulating gene expression and cellular functions, and analyse their interactions and crosslinks within the cellular network.

    • Students are able to critically discuss the ethical considerations and societal impacts of stem cell research and organoid applications, including their potential in regenerative medicine and other therapeutic innovations.

    • Students integrate their understanding of stem cells, organoids, and signaling pathways to explain how cellular mechanisms are involved in development, disease progression, and the design of targeted therapeutic strategies.

    2.5 SWS
    4 ECTS
    Signalling Pathways | VO

    Signalling Pathways | VO

    1 SWS   2 ECTS

    Inhalt

    • ​​​Important signalling pathways of the cell (e.g. MAP kinase-, GPCR-, Nuclear Hormone Receptor-, NF-kB-, Jak/Stat-, Wnt-, Hedgehog-, Tgfß-, Apoptosis-, PI3K/Akt- and stress pathways) 

    • ​Signalling pathways effects on gene expression and other functions of the cell.  

    • ​In addition, crosslinks with other signalling pathways are discussed.  

    • ​Techniques for the analysis of signalling pathways are also presented.​​ 

    Lernergebnisse

    • Students are able to describe the major signalling pathways of the cell, including MAP kinase, GPCR, Nuclear Hormone Receptor, NF-kB, Jak/Stat, Wnt, Hedgehog, TGF-beta Apoptosis, PI3K/Akt, and stress pathways.

    • Students can describe how these signalling pathways influence gene expression and other cellular functions.

    • Students are able to explain the interactions and crosslinks between different signalling pathways.

    • Students can discuss the techniques used to analyse signalling pathways and their applications in research.

    Lehrmethode

    Lecture

    Prüfungsmethode

    Endprüfung: Written exam on the computer (multiple choice)

    Literatur

    • Bruce Alberts, Alexander Johnson, Julian Lewis, David Morgan, Martin Raff, Keith Roberts, Peter Walter (2014): Molecular Biology of the Cell. Garland Science, ISBN-13: 978-0815344643 
    • ​Martin Beckerman (2009): Cellular Signaling in Health and Disease. Springer, ISBN-13: 978-0387981727​​ 

    Unterrichtssprache

    Englisch

    1 SWS
    2 ECTS
    Stem Cells & Organoids | VO

    Stem Cells & Organoids | VO

    1.5 SWS   2 ECTS

    Inhalt

    • ​​Stem cell basics 

    • ​Introduction to development 

    • ​Pluripotency and reprogramming  

    • ​Adult stem cells and regeneration 

    • ​Stem cells and therapy 

    • ​Generation and use of organoids 

    • ​Human stem cell-based embryo models 

    • ​Ethical considerations of stem cell science​ 

    Lernergebnisse

    • Students are able to define and characterize stem cells, basics of stem cell biology, and how cell have the potential to become any cell in the body gain specific identity and function.

    • Students are able to describe how many types of stem cells are there, where these cells can be found during our life and how to compare these types of cells to man-made stem cells.

    • Students are able to define hallmarks of totipotent and pluripotent stem cell states; define the principles of reprogramming; design experiments to test if cells are pluripotent; describe the embryonic stem cell origin; understand cellular features that sustain pluripotency; compare different pluripotent stem cells and strategies for obtaining them.

    • Students can describe advances in organoid biology with a focus on how organoid and human stem cell-based embryo models have generated a better understanding of human-specific processes in development and disease.

    • Students can discuss society & clinical applications using stem cells and about the ethical considerations of stem cell science.

    Lehrmethode

    Lecture

    Prüfungsmethode

    Endprüfung: Written Exam

    Literatur

    • ​​Cerneckis J, Cai H, Shi Y. Induced pluripotent stem cells (iPSCs): molecular mechanisms of induction and applications. Signal Transduct Target Ther. 2024 Apr 26;9(1):112. doi: 10.1038/s41392-024-01809-0. PMID: 38670977; PMCID: PMC11053163. 

    • ​Corsini NS, Knoblich JA. Human organoids: New strategies and methods for analyzing human development and disease. Cell. 2022 Jul 21;185(15):2756-2769. doi: 10.1016/j.cell.2022.06.051. PMID: 35868278. 

    • ​Du P, Wu J. Hallmarks of totipotent and pluripotent stem cell states. Cell Stem Cell. 2024 Mar 7;31(3):312-333. doi: 10.1016/j.stem.2024.01.009. Epub 2024 Feb 20. PMID: 38382531; PMCID: PMC10939785. 

    • ​Kirkeby A, Main H, Carpenter M. Pluripotent stem-cell-derived therapies in clinical trial: A 2025 update. Cell Stem Cell. 2025 Jan 2;32(1):10-37. doi: 10.1016/j.stem.2024.12.005. PMID: 39753110. 

    • ​​Lanza, Robert P. et al. (2013): Handbook of Stem Cells, Vol 1, Elsevier Amsterdam, 978-0123859426 and Handbook of Stem Cells, Vol 2, Elsevier Amsterdam, 978-0123859426​ 

    • ​Poss KD, Tanaka EM. Hallmarks of regeneration. Cell Stem Cell. 2024 Sep 5;31(9):1244-1261. doi: 10.1016/j.stem.2024.07.007. Epub 2024 Aug 19. PMID: 39163854; PMCID: PMC11410156. 

    • ​Shahbazi MN, Pasque V. Early human development and stem cell-based human embryo models. Cell Stem Cell. 2024 Oct 3;31(10):1398-1418. doi: 10.1016/j.stem.2024.09.002. PMID: 39366361; PMCID: PMC7617107.​ 

    Unterrichtssprache

    Englisch

    1.5 SWS
    2 ECTS

    Modul Biological Systems in Health & Disease

    Biological Systems in Health & Disease

    5 SWS   6 ECTS

    Lernergebnisse

    • Upon successful completion of the module, students are able to describe how molecular mechanisms, such as DNA damage, mutations, and cellular interactions, contribute to the development of cancer, vascular diseases, and neurobiological disorders.

    • Students can analyse and explain fundamental biological processes, including primary and secondary hemostasis, angiogenesis, vasculogenesis, and neuronal cell function, linking these processes to their physiological and pathological roles.

    • Students are able to critically evaluate the role of oncogenes, tumour suppressor genes, and nervous system dysfunction in disease progression and relate these concepts to the causality of specific pathologies, such as cancer, thrombotic events, and neurodegenerative diseases.

    • Students are able to critically assess current models in cancer research, vascular biology, and neurobiology, interpreting recent findings and discussing their potential implications for understanding diseases and developing therapeutic strategies.

    • Students can integrate knowledge of the tumour microenvironment, lymphatics, and blood vessels, comparing their structural and functional interactions, and explain how these contribute to health and disease.

    • Students can apply interdisciplinary approaches to analyse complex biological systems such as the nervous system and tumour microenvironment, utilizing their understanding to propose solutions for research challenges and therapeutic innovation.

    5 SWS
    6 ECTS
    Molecular Neurobiology | VO

    Molecular Neurobiology | VO

    2 SWS   2 ECTS

    Inhalt

    ​​Students are able to explain  

    • ​membrane physiology 

    • ​development of action potentials 

    • ​electrotonic and saltatoric conduction 

    • ​synapses 

    • ​important transmitters and the resulting pharmacological modulation 

    • ​temporal and spatial integration 

    • ​pre- and postsynaptic excitation and inhibition 

    • ​motor functions of the spinal cord, basal ganglia, cerebellum, and cortex including disorders caused by lesions in these regions 

    • ​structure and function of the autonomic nervous system including effects on important organs, 

    • ​function of the sensory systems.​ 

    Lernergebnisse

    • Students know and can explain the biology and pathophysiology of the nervous system in detail. Based on morphological observation of this system, students know and can name its cellular components and how they functionally interact.

    • Students know and can describe the biology of neuronal cells at the molecular level in detail and students are independently able to characterize the phenotypic and functional peculiarities of these cells.

    • Students know the nervous system as a complex network beyond individual cellular interactions and can comprehensively interpret its fundamental physiological significance and function.

    • Students know about and are able to explain dysfunction of this biological system as causes of some important specific diseases and are able to understand and describe the causality of their pathophysiology at the molecular level.

    Lehrmethode

    • ​​Lecture 

    • ​Dialogue and discussion 

    • ​Problem-based learning​ 

    Prüfungsmethode

    Endprüfung: Written final exam

    Literatur

    • ​​​EJ Nestler, PJ Kenny, SJ Russo & A Schaefer (2020): Molecular Neuropharmacology, 4th ed, McGrawHill, 978-1260456905 

    • ​D Massey, N Cunniffe & I Noorani (2022): Carpenter’s Neurophysiology: A Conceptual Approach, CRC Press, 978-0367340605​ 

    Unterrichtssprache

    Englisch

    2 SWS
    2 ECTS
    Tumour Biology | VO

    Tumour Biology | VO

    2 SWS   3 ECTS

    Inhalt

    • ​​Epidemiology, risk factors and prevention of cancer 

    • ​DNA damage and genomic stability 

    • ​Oncogenes and tumour suppressors 

    • ​Tumour virology and cancer models 

    • ​Tumour evolution and heterogeneity 

    • ​Cancer cell signalling 

    • ​Tumour microenvironment - angiogenesis and immunity 

    • ​Drug resistance and biomarkers of cancer​ 

    Lernergebnisse

    • Students are able to explain how DNA damage leads to mutations and cancer development.

    • Students are able to discuss differences between oncogenes and tumour suppressor genes and name examples.

    • Students are able to describe interactions in the tumour microenvironment that contribute to cancer development.

    • Students are able to discuss current models in cancer research.

    • Students are able to interpret recent findings in the cancer research field and assess potential implications for cancer therapy.

    Lehrmethode

    • ​​Lecture 

    • ​Dialogue and discussion​

    Prüfungsmethode

    Endprüfung: Written exam

    Literatur

    • ​​The Biology of Cancer (R.A. Weinberg, 3rd Edition);  

    • ​Molecular Biology of the Cell (B. Alberts et al, 7th Edition);  

    • ​selected Review articles as indicated on lecture slides (e.g. Nat. Rev. Cancer)​

    Unterrichtssprache

    Englisch

    2 SWS
    3 ECTS
    Vascular Biology | VO

    Vascular Biology | VO

    1 SWS   1 ECTS

    Inhalt

    • ​​Blood cell types and their roles in biology: erythrocytes, platelets, neutrophils, monocytes, lymphocytes, eosinophils, basophils 

    • ​Vascular biology overview 

    • ​Cells of the vasculature: endothelial cells, pericytes, smooth muscle cells ​ 

    Lernergebnisse

    • Students can describe the functions of the various blood cells.

    • Students can explain the processes of primary and secondary hemostasis.

    • Students can discuss diseases related to dysfunctional blood coagulation, thrombotic events and atherosclerosis.

    • Students can describe the formation of blood vessels (angiogenesis and vasculogenesis.

    • Students can explain the difference between lymphatics and blood vessels.

    Lehrmethode

    • ​​Lecture 

    • ​Dialogue and discussion 

    • ​Self-study  

    • ​Problem-based learning 

    • ​Research-based learning​ 

    Prüfungsmethode

    Endprüfung: Online Moodle Test – with marks from 1 – 5.

    Literatur

    • ​​Short Textbook of Hematology: ISBN: 978-8123924076 

    • ​The ESC Textbook of Vascular Biology: ISBN: 978-0198755777 

    • ​Hemostasis and Thrombosis: ISBN: 978-3030193294​

    Unterrichtssprache

    Englisch

    1 SWS
    1 ECTS
    Modul Drug Design, Pharmacology & AI

    Drug Design, Pharmacology & AI

    4 SWS   5 ECTS

    Lernergebnisse

    • Upon successful completion of the module, students are able to explain the structural properties of proteins, describe protein-ligand interactions, and outline the molecular determinants of binding affinities using both theoretical and experimental approaches.

    • Students can utilise methods for determining molecular structures of proteins and protein-ligand complexes, characterizing interactions, and applying AI-based strategies in hit identification and drug optimization.

    • Students are able to analyse and optimise compounds in drug discovery, evaluate prerequisites for drug developability, and apply pharmacokinetics principles (ADME) in the context of pharmaceutical research.

    • Students can analyse mechanisms of drug action, apply molecular pharmacology principles to novel research questions, and critically interpret information from Summaries of Product Characteristics (SmPCs).

    • Students are able to critically evaluate high-quality research articles, summarise findings, and participate in scientific discussions on pharmacological and drug discovery topics, including the use of Antimicrobial Stewardship Programs.

    • Students can describe the applications of AI in drug discovery, critically assessing its role in identifying and optimising drug candidates while exploring its potential to address complex pharmaceutical challenges.

    4 SWS
    5 ECTS
    Drug Design & AI | VO

    Drug Design & AI | VO

    2 SWS   2 ECTS

    Inhalt

    • ​​Fundamental principles behind structural properties of proteins 

    • Methods to determine molecular structures of proteins and protein-ligand complexes 

    • ​​Experimental methods to characterize protein-ligand interactions (includes determination of affinities) as well as the molecular interactions that govern binding of ligands to proteins 

    • ​​Strategies and methods to find and optimize hits in drug discovery and with prerequisites that compounds need to be developable into drugs 

    • ​Principles and experimental methods in the area of pharmacokinetics (ADME) 

    • ​Application areas and examples of AI in drug discovery​​​​ 

    Lernergebnisse

    • Students can describe the fundamental principles behind structural properties of proteins.

    • Students can explain methods to determine molecular structures of proteins and protein-ligand complexes.

    • Students can discuss experimental methods to characterize protein-ligand interactions (includes determination of affinities) as well as the molecular interactions that govern binding of ligands to proteins.

    • Students can describe strategies and methods to find and optimize hits in drug discovery and with prerequisites that compounds need to be developable into drugs.

    • Students can describe principles and experimental methods in the area of pharmacokinetics (ADME) and in some application areas and examples of AI in drug discovery.

    Lehrmethode

    • Lecture 

    • Individual work 

    Prüfungsmethode

    Endprüfung: Written exam

    Literatur

    • ​​G. Patrick, (2017): An Introduction to Medicinal Chemistry, Oxford University Press 
    • ​G. Klebe, (2025): Drug Design: Methodology, Concepts, and Mode-of-Action, Springer 
    • ​J. Berg, G.J. Gatto, J. Hines, J. Tymoczko, L. Stryer (2023): Biochemistry, macmillan learning ​
    • A. Talevi & P.A. Quiroga (2024): ADME Processes in Pharmaceutical Sciences, Springer 
    • ​N. Brown (2020): Artificial Intelligence in Drug Discovery, Royal Society of Chemistry​​ 

    Unterrichtssprache

    Englisch

    2 SWS
    2 ECTS
    Molecular Pharmacology | ILV

    Molecular Pharmacology | ILV

    2 SWS   3 ECTS

    Inhalt

    • ​​​Basics of general pharmacology (pharmacokinetic, pharmacodynamic) 

    • ​Prodrug strategy 

    • ​Summary of product characteristics (SmPC)  

    • ​Kidneys and their function as excretion organ 

    • ​Most frequently prescribed drugs for the treatment of selected human diseases (e.g. background of a disease, mechanism of action, important side effects, drug interactions) 

    • ​Introduction to Antimicrobial Stewardship (AMS) Program ​​ 

    Lernergebnisse

    • Students are able to analyse the contents of a SmPC (summery of product characteristics), to explain its structure as well as apply its information in a practical setting.

    • Students are able to understand and apply basic principles of the Antimicrobial Stewardship Program.

    • Students are able to understand and describe mechanisms of action of known drugs.

    • Students are able to apply pharmaceutical chemical as well as molecular pharmacological information to previously unknown research questions.

    • Students are able to read high-quality research papers critically, summarize the essentials and discuss as well as evaluate scientific topics in an international environment.

    Lehrmethode

    • ​​Lecture with structured exercises 
    • ​Dialogue and discussion 
    • ​Individual work 
    • ​Group work 
    • ​Supervised distance learning 
    • ​Self-study 
    • ​Blended learning​ 

    Prüfungsmethode

    Immanente Leistungsüberprüfung: Partial performance with continuous assessment (e.g., presentations, written work, case studies, exams, multiple-choice tests, reflection reports)

    Literatur

    • ​​​Goodman & Gilman's (2022): The Pharmacological Basis of Therapeutics. McGraw-Hill, ISBN: 978-1-2642-5807-9 

    • ​Rang, Ritter, Flower, Henderson (2016): Rang & Dale’s Pharmacology. Elsevier Ltd, 978-0-7020-5362-7 

    • ​G. Patrick, (2017): An Introduction to Medicinal Chemistry, Oxford University Press, ISBN: 9780198749691 

    • ​Recent scientific papers provided during the course​​

    Unterrichtssprache

    Englisch

    2 SWS
    3 ECTS
    Modul Electives 2

    Electives 2

    2 SWS   2 ECTS

    Lernergebnisse

    • Upon successful completion of the module, students are able to apply GxP (GLP, GCP, GMP, etc.) principles in pre-clinical and clinical studies, manufacturing, and pharmacovigilance processes, ensuring compliance with regulatory standards.

    • Students can describe and analyse the pharmacovigilance systems required by Marketing Authorization Holders (MAHs) and understand the regulatory frameworks, including European pharmaceutical legislation and the structure of the Common Technical Document (CTD).

    • Students are able to understand and engage in effective cooperation with suppliers and regulatory authorities, addressing compliance requirements and practical demands related to pharmaceutical product development and oversight.

    • Upon successful completion of the module, students are able to develop and adapt long-term research projects, including defining scientific questions, creating experimental work packages, and adjusting plans to meet project constraints and goals.

    • Students can critically assess research projects by evaluating their cost-effectiveness, personnel requirements, and scientific quality, ensuring alignment with academic and industrial biotech research standards.

    • Students can discuss academic and industrial research strategies, particularly in drug discovery and immunology, and be able to articulate these strategies within broader scientific and industrial contexts.

    2 SWS
    2 ECTS
    Electives 3 (1 ECTS nach Wahl)
    Computerised Systems and Analytical Method Validation | ILV

    Computerised Systems and Analytical Method Validation | ILV

    1 SWS   1 ECTS

    Inhalt

    ​​​The course is an introduction to the quality-based fundamentals of validation and operation of computerised systems and of analytical method validation (exemplarily bioanalytical HPLC methods) to obtain reliable results of data integrity and reliable products for the market. It applies to the pharmaceutical industry and the respective regulative environment as required to be compliant with the current EU regulations as addressed by the health authorities: 

    • ​In general introduction from the QM systemic point of view 

    • ​GxP requirements to be considered
      - generally (basics)
      - specifically interpreted by an authority inspector 

    • ​Quality risk management 

    • ​Qualification / validation of computerised systems (CSV) 

    • ​Validation of analytical methods 

    • ​Management of deviations and changes 

    • ​Corrective and preventive actions 

    • ​Appropriate documentation 

    • ​Navigation in a multivalent working environment 

    • ​CSV-explanation based on typical computerised systems like ERP-, MES-, LIMS-databases, cloud systems, data storage and retention systems, electronic archiving and backups 

    • ​Analytical method validation based mainly/exemplarily on bioanalytical HPLC methods 

    • ​Practical examples as the core of explanations applied to the legislative demands​​ 

    Lernergebnisse

    • Students can discuss elements and stages of pre-clinical / clinical study environment and in manufacturing (production and control) and vigilance of pharmaceutical / medicinal products (under GxP (GLP, GCP, GMP, …) compliance).

    • Students can describe the basics of the cooperation with suppliers with regard to the course content

    • Students can explain the basics of the demands of GxP authorities in practical environment with regard to the course content.

    Lehrmethode

    • ​​Lecture 

    • ​Dialogue and discussion 

    • ​Individual work 

    • ​Group work (if more than 5 participants) 

    • ​Self-study 

    • ​Problem-based learning 

    • ​Project work (as group work, see above) 

    • ​Legal matter based learning​ 

    Prüfungsmethode

    Endprüfung: Project topic to be solved as individual (≤ 6 pers.) or group work (groups of 2 or 3 pers., 3 only if 1 is left) in written form (max. 2 pages, time: 10-15 days)

     

    3-5 days after submission of project documentation, oral examination in groups of 2 or 3 participants (3 only if 1 participant is left) – every participant is examined individually by separate questions (groups of 2/3 participants 30/45 min)

    Literatur

    • ​​Publicly available literature on validation of computerised systems and data integrity in the preclinical / clinical environment and pharmaceutical industry 

    • ​EudraLex - EU Legislation, Volume 4 - Guidelines for good manufacturing practices for medicinal products for human and veterinary use, Annex 11: Computerised Systems 

    • ​OECD Series on Principles of GLP and compliance monitoring, No. 17: Advisory Documents of the Working Group on GLP, Application of GLP Principles to Computerised Systems 

    • ​OECD Series on Principles of GLP and compliance monitoring, No. 22: Advisory Document of the Working Party on GLP on GLP Data Integrity 

    • ​ICH guideline M10 on bioanalytical method validation and study sample analysis, 25 July 2022, EMA/CHMP/ICH/172948/2019 

    • ​Documents and procedures as used by the Austrian inspection authority (part of BASG/AGES) 

    • ​will be updated contemporarily

    Unterrichtssprache

    Englisch

    1 SWS
    1 ECTS
    Pharmacovigilance & Regulatory Affairs | ILV

    Pharmacovigilance & Regulatory Affairs | ILV

    1 SWS   1 ECTS

    Inhalt

    ​​For Pharmacovigilance Part: 

    • ​Definitions 

    • ​History of Pharmacovigilance (PV) 

    • ​Pharmacovigilance System 

    • ​Pharmacovigilance System Masterfile 

    • ​PV-reports (Periodic Safety Update Reports, Risk Management Plan) 

    • ​Individual Case Safety Reports  

    • ​Signal Detection 

    • ​Interactions with Regulatory Authorities 

    • ​Important global PV databases & sources of information for safety -related contents for medicinal products ​

    ​For Regulatory Affairs​ Part: 

    • ​Important competent authorities 

    • ​Legal Requirements  

    • ​Different types of approval and their strategic differences in marketing 

    • ​Regulatory Processes 
      Marketing Authorisation 
      Variation 
      Renewal 

    • ​Structure of pharmaceutical Dossiers (e)CTD 

    • ​Legal status of supply and impact on reimbursement/advertisement ​ 

    Lernergebnisse

    • Students are able to describe and understand the Pharmacovigilance-System that each MAH is required to set up and maintain for their medicinal products.

    • Students can discuss the current pharmaceutical legislation in Europe/Austria. They know the main regulatory processes and the structure of the Common Technical Document (CTD).

    Lehrmethode

    Lecture​

    Prüfungsmethode

    Endprüfung: Written exam (multiple choice)

    Literatur

    • ​​Austrian Medicinal Product Act 

    • ​EU Regulations & Directives 

    • ​EMA GVP modules 

    • ​ICH M4​ 

    Unterrichtssprache

    Englisch

    1 SWS
    1 ECTS
    Electives 4 (1 ECTS nach Wahl)
    Scientific Method: Drug Discovery | SE

    Scientific Method: Drug Discovery | SE

    1 SWS   1 ECTS

    Inhalt

    • ​​​Course Focus: Strategies of scientific research 

    • ​Learning Activities: 

    • ​Develop a research strategy on a specific topic in drug discovery. 

    • ​Design experiments and work packages. 

    • ​Evaluate designs based on criteria such as: ​
      - Significance for the research question
      - Costs
      - Effort

    • ​Final Task: Present the research project as a group.​​ 

    Lernergebnisse

    • Students can critically evaluate research projects based on multiple criteria, including cost-effectiveness and scientific merit.

    • Students can explain how work packages become the basis for figures in a scientific publication.

    • Students are able to design long-term research projects to address scientific questions, including the development of experiments and work packages.

    • Students can adjust research plans and work packages to meet project requirements and constraints.

    • Students will understand and be able to discuss strategies of academic and industrial biotech research, particularly in the context of Drug Discovery.

    Lehrmethode

    ​Dialogue and discussion​ 

    Prüfungsmethode

    Immanente Leistungsüberprüfung: The presentation and discussion of research projects will be evaluated.

    Literatur

    • ​Research in Medical and Biological Sciences: From Planning and Preparation to Grant Application and Publication; edited by Petter Laake, Haakon Breien Benestad, Bjorn R. Olsen; Academic Press, 2015​ 

    Unterrichtssprache

    Englisch

    1 SWS
    1 ECTS
    Scientific Method: Immunology | SE

    Scientific Method: Immunology | SE

    1 SWS   1 ECTS

    Inhalt

    • ​​Learning strategies of scientific research 

    • ​Developing a strategy for a given topic (in Immunology) 

    • ​Writing a grant proposal 

    • ​Designing experiments and work packages  

    • ​Evaluating the experiments and work packages according to different criteria like costs, effort, efficiency 

    • ​Oral group presentations of the research project​ 

    Lernergebnisse

    • Students understand and are able to discuss strategies of academic and industrial biotech research.

    • Students are able to design long-term research projects to tackle scientific questions.

    • Students are able to adjust individual work packages according to the requirements of the project.

    • Students can evaluate evaluating research projects based on costs, personnel, and scientific quality.

    Lehrmethode

    • Lecture 

    • Dialogue and discussion 

    • Individual work 

    • Group work 

    • Supervised distance learning 

    • Problem-based learning 

    • Project work 

    • Research-based learning 

    • Writing of a grant proposal 

    Prüfungsmethode

    Immanente Leistungsüberprüfung: Assessment of quality of written grant proposal; assessment of quality of oral presentation; assessment of participation in discussion

    Literatur

    Unterrichtssprache

    Englisch

    1 SWS
    1 ECTS
    Modul Immunity & Disease

    Immunity & Disease

    2 SWS   3 ECTS

    Lernergebnisse

    • Upon successful completion of the module, students are able to explain the molecular and cellular basis of allergies, autoimmune diseases, infectious diseases, and acute inflammatory conditions, including their pathomechanisms and clinical manifestations.

    • Students are able to analyse and articulate the similarities and differences between allergies, autoimmune diseases, and immunodeficiencies, demonstrating a clear understanding of their underlying mechanisms.

    • Students can describe the determinants of immune-mediated diseases, including genetic predispositions, environmental triggers, and mechanisms of immune tolerance that influence disease progression.

    • Students are able to identify and describe therapeutic strategies for the treatment of allergic and autoimmune diseases, critically assessing their mechanisms, applications, and limitations.

    • Students can analyse and evaluate scientific publications, applying evidence-based reasoning to understand advancements in immunological research and clinical applications.

    • Students can integrate their understanding of immune mechanisms and clinical presentations to address complex immunological diseases, linking theoretical concepts with practical insights into diagnosis and treatment strategies.

    2 SWS
    3 ECTS
    Allergies & Autoimmune Diseases | VO

    Allergies & Autoimmune Diseases | VO

    1 SWS   2 ECTS

    Inhalt

    • ​​​Explanation of the molecular and cellular mechanisms of allergies and other hypersensitivity reactions 

    • ​Description of the symptoms, causes and risk factors of allergic diseases 

    • ​Discussion of advantages and disadvantages of current diagnostic tests and therapeutic possibilities of allergic diseases 

    • ​Presentation of the strategies for improvement of diagnosis and therapies of allergies  

    • ​Explanation of the pathomechanisms underlying autoimmune disorders 

    • ​Description of the determinants (such as genetic predisposition or environmental factors) that influence the development of autoimmunity 

    • ​Discussion of the pathogenesis, clinical manifestation and the treatment possibilities of selected autoimmune diseases 

    • ​Discussion of similarities and differences between allergies and autoimmune disorders​​ 

    Lernergebnisse

    • Students can describe the molecular and cellular basis and of the pathomechanisms underlying allergies (and other hypersensitivity reactions) and autoimmune diseases and they can describe the clinical manifestations of these diseases.

    • Students are aware of and can explain the similarities and of the differences between allergies and autoimmune disorders.

    • Students understand and can describe the determinants (e.g., genetic predisposition, environmental triggers) that influence the development of the allergic and autoimmune diseases.

    • Students understand and can describe and can describe therapeutic approaches for the treatment of allergic and autoimmune diseases.

    Lehrmethode

    • ​​Lecture 

    • ​Dialogue and discussion 

    • ​Self-study​ 

    Prüfungsmethode

    Endprüfung: Written exam

    Literatur

    • ​​Abbas AK, Lichtman AH, Pillai S (2017): Cellular and Molecular Immunology, Elsevier Saunders, 978-0323479783 

    • ​Murphy K, Weaver C (2016): Janeway's Immunobiology, Garland Science, 978-0815345053 

    • ​Holgate ST, Church MK, Broide MH, Martinez FD (2012): Allergy, Elsevier Saunders, 978-0702057823 

    • ​Male D, Brostoff J, Roth DB, Roitt I (2013): Immunology, Elsevier Mosby, 978-0323080583 

    • ​Original publications and review articles​ 

    Unterrichtssprache

    Englisch

    1 SWS
    2 ECTS
    Clinical Aspects of Immunology | VO

    Clinical Aspects of Immunology | VO

    1 SWS   1 ECTS

    Inhalt

    ​​Immune System Overview

    • ​Evolved to protect against pathogens (viruses, bacteria, parasites). 
    • ​Composed of innate and acquired immunity working together.
       

    Key Topics

    • ​Molecular basis and clinical relevance of the immune system in infectious and acute inflammatory diseases. 
    • ​The immune system’s role in distinguishing between “self” and “foreign”. 

    Immune System Dysfunctions

    • Autoimmune Diseases
      - ​Occur when the immune system fails to recognize “self” structures, leading to a lack of tolerance. 
      - ​Includes clinical presentation, diagnostics, and pathogenesis models of common autoimmune diseases. 

    • Immunodeficiency
      - ​Results from inadequate recognition or response to “foreign” structures, leading to insufficient protection and potentially life-threatening infections. 
      ​- ​Includes discussion on congenital and acquired immune defects. 

    Additional Focus

    • ​Clinical relevance of the overlap between immunodeficiency and autoimmune phenomena.​ 

    Lernergebnisse

    • Students can discuss the mechanisms and clinical presentation of infectious and acute inflammatory diseases.

    • Students can discuss the mechanisms of immune tolerance.

    • Students can discuss the clinical presentation of autoimmune diseases and immunodeficiencies.

    • Students can critically evaluate scientific literature.

    Lehrmethode

    • ​​Lecture with structured exercises 

    • ​Group work 

    • ​Discussions​ 

    Prüfungsmethode

    Endprüfung: Written exam

    Literatur

    • ​​​Abbas, Abul, K., Lichtman, Andrew H. Pillai, Shiv: Cellular and Molecular Immunology, Saunders. 

    • ​Murphy, Kenneth and Weaver, Casey: Janeway's Immunobiology, Garland Science​​ 

    Unterrichtssprache

    Englisch

    1 SWS
    1 ECTS
    Modul Omics Data Analysis

    Omics Data Analysis

    4 SWS   5 ECTS

    Lernergebnisse

    • Upon successful completion of the module, students are able to explain the principles of Next Generation Sequencing (NGS) and mass-spectrometry technologies, including their operational mechanisms and applications in Omics research.

    • Students can process NGS data using Galaxy workflows and perform quality control, alignment, and data preparation for further analysis in R/Bioconductor, as well as extract and analyse mass-spectrometry datasets.

    • Students are able to execute NGS data analysis pipelines in R/Bioconductor, including diagnostic graph generation and statistical evaluations, and apply clustering and Gene Ontology (GO) enrichment techniques to interpret gene lists.

    • Students can critically evaluate mass-spectrometry-based methods and NGS workflows, identifying limitations and implementing corrective actions during quality control to ensure reliable results.

    • Students can use bioinformatics tools and workflows for NGS and mass-spectrometry data analysis, demonstrating their ability to work with common file formats and software platforms effectively.

    • Students can integrate their understanding of NGS and mass-spectrometry data processing to solve complex biological questions, critically assess methodologies, and contribute to the development of Omics-driven insights.

    4 SWS
    5 ECTS
    Computational Data Analysis | ILV

    Computational Data Analysis | ILV

    2 SWS   2 ECTS

    Inhalt

    • ​​Introduction to Next Generation Sequencing (NGS) Technologies  

    • ​Analyse NGS data using Galaxy and R/Bioconductor* pipelines 

    • ​Quality Control of NGS data in Galaxy and R/Bioconductor 

    • ​Alignment of reads to genomic references and visualization of aligned reads in a genome browser 

    • ​Convert reads into feature-wise counts 

    • ​Common Data formats used in Next Generation Sequencing 

    • ​Further analysis of resulting gene lists using methods like clustering or GO term enrichment. 

    • ​Learn how to spot issues with data during Quality Control and perform corrective actions 

    ​* No prior knowledge of R/Bioconductor needed.​ 

    Lernergebnisse

    • Students can discuss Next Generation Sequencing (NGS) Technologies and can process NGS data.

    • Students can process data from NGS sequencers using the Galaxy software workflow, including Quality Control, alignment of reads to reference genomes, create read counts and prepare data for further processing in R/Bioconductor as well as the usage of common NGS file formats.

    • Students can write programs in the R programming language and can execute a NGS analysis pipeline using R and Bioconductor including Quality control, diagnostic graphs and the statistical analysis of NGS data.

    • Students can analyse gene lists from processed NGS data using methods such as clustering, GO Term enrichments.

    • Students can identify issues with NGS data during Quality Control and implement corrective actions.

    Lehrmethode

    • ​​​Lectures with structured exercises 

    • ​Dialogue and discussion 

    • ​Group work 

    • ​Individual Project work​​ 

    Prüfungsmethode

    Endprüfung: Final individual project work

    Literatur

    • ​​Satam, Heena et al. “Next-Generation Sequencing Technology: Current Trends and Advancements.” Biology vol. 12,7 997. 13 Jul. 2023, doi:10.3390/biology12070997 

    • ​The Galaxy Community. The Galaxy platform for accessible, reproducible, and collaborative data analyses: 2024 update, Nucleic Acids Research, 2024;, gkae410, doi.org/10.1093/nar/gkae410&nbsp;

    • ​R Core Team (2018). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. www.R-project.org/&;

    Unterrichtssprache

    Englisch

    2 SWS
    2 ECTS
    Mass-spectrometry-based Omics Technologies | ILV

    Mass-spectrometry-based Omics Technologies | ILV

    2 SWS   3 ECTS

    Inhalt

    • ​​basic principles of mass-spectrometry:  

    • ​physics of mass-analysers and ion sources ( 

    • ​introduction types of mass spectrometers (TOF, sectorial instruments, quadrupole, Triple-Quad, Ion traps, FT ICR - orbitrap) and the respective combinations 

    • ​gas-phase fragmentation techniques (Collision induced dissociation CID, ETD) 

    • ​MS/MS based analysis and de novo sequencing of peptides 

    • ​key figures of merit in mass-spectrometry (Resolution R and mass accuracy) 

    • ​mass-spectrometry data interpretation  

    • ​mass-spectrometry acquisition methods.  

    • ​Omics related examples of mass-spectrometry based workflows in proteomics, metabolomics, lipidomics and environmental research.​ 

    Lernergebnisse

    • Students can explain the fundamental physics involved in the operation of mass-spectrometers.

    • Students are able to extract key information from generic mass-spectrometry data sets and conduct basic data-analysis.

    • Students can critically evaluate different mass-spectrometry based methods in the context of Omics applications.

    Lehrmethode

    Lecture with structured exercises

    Prüfungsmethode

    Endprüfung: Written exam

    Literatur

    • ​​Friedrich Lottspeich, Joachim W. Engels, Solodkoff Zettlmeier Lay (2018): Bioanalytics: Analytical Methods and Concepts in Biochemistry and Molecular Biology, Wiley, ISBN-13: 978-3527339198 

    • ​Jürgen Gross (2017): Mass Spectrometry: A Textbook, Springer, ISBN-13: 978-3319543970 

    • ​Mike S. Lee (2012): Mass Spectrometry Handbook, Wiley, ISBN-13: 978-0470536735​ 

    Unterrichtssprache

    Englisch

    2 SWS
    3 ECTS
    Modul Research & Management

    Research & Management

    3 SWS   3 ECTS

    Lernergebnisse

    • Upon successful completion of the module, students are able to identify and secure research opportunities, develop comprehensive project plans, and apply methodologies to address key challenges in life sciences.

    • Students can communicate research objectives and methodologies, effectively presenting project plans, and articulating their motivations to diverse audiences.

    • Students are able to critically assess peer research proposals, provide constructive feedback, and incorporate insights from peers and supervisors to improve the feasibility and quality of their research projects.

    • Students can discuss innovation processes and management approaches in biotechnology, including knowledge creation, market-driven development of inventions, and strategic funding opportunities in Austria and Europe.

    • Students are able to create and assess detailed business plans based on innovative biotechnology ideas, incorporating all essential elements of a start-up, such as market analysis, funding strategies, and operational frameworks.

    • Students can describe the mechanisms, organizations, and support networks for entrepreneurial initiatives, such as INITS, WKO, and AWS, enabling them to leverage these resources effectively in their start-up ventures.

    3 SWS
    3 ECTS
    Innovation in Biotechnology & Start-ups | ILV

    Innovation in Biotechnology & Start-ups | ILV

    2 SWS   2 ECTS

    Inhalt

    • ​​Knowledge Management: Definitions, R&D focus, human and data perspectives, tools, and practices. 

    • Innovation Management: From invention to innovation, strategic processes, and implementation. 

    • Business Plan Development: 
      - ​Vision, market analysis, financials, legal aspects, implementation planning. ​
      - Four phases: idea, feedback, testing, launch. 

    • Key Tools: Porter’s 5 Forces, SWOT, life-cycle analysis, Canvas Model, risk analysis.​ 

    Lernergebnisse

    • Students can explain the principles of knowledge (in a knowledge driven society), its creation and management, focused/embedded in R&D of Biotechnology.

    • Students can describe the nature of inventions (in terms of “new knowledge”) and its further development to a market accepted innovation.

    • Students can understand, recognize and describe the different types of innovation and their drivers, the nature of innovation and its processes as well as different innovation management concepts and approaches with dedicated focus on strategic funding in Austria and Europe (FFG and EU FPxx).

    • Students are able to develop their own business plan, started from their own business idea, considering all elements of an entire business case to be incorporated in a company start-up setting.

    • Students can name the most important mechanisms and support organisations for entrepreneurial initiatives in particular at the UAS (INITS, WKO, Investors, AWS, etc.).

    Lehrmethode

    • ​​Lecture 

    • ​Dialogue and discussion 

    • ​Group work 

    • ​Supervised distance learning 

    • ​Self-study 

    • ​Project work​ 

    Prüfungsmethode

    Endprüfung: Presentation of the group work, documentation of the group work either in Word or Powerpoint

    Literatur

    • ​​Nonaka, I., Takeuchi, H. (1995): The Knowledge Creating Company - How Japanese Companies Create the Dynamics of Innovation, Oxford University Press, ISBN: 9780195092691 

    Unterrichtssprache

    Englisch

    2 SWS
    2 ECTS
    Master Project Seminar | SE

    Master Project Seminar | SE

    1 SWS   1 ECTS

    Inhalt

    • ​​Research Project Selection: Students independently find a suitable research project in a life science research institution or company. 

    • Project Planning: Development of a comprehensive project plan that outlines the research goals, problem definition, and methodologies to be used. 

    • Mentorship and Supervision: Ongoing support and guidance from the Master's Thesis Coordinator and the direct supervisor of the research project. 

    • Peer Presentations: Students present their project plans and motivations to their peers, enhancing their presentation and communication skills. 

    • Group Discussions and Feedback: Active participation in discussions, providing and receiving feedback on the presented research plans, fostering critical thinking and collaborative learning.​ 

    Lernergebnisse

    • Students are able to independently identify and secure a suitable research project in a national or international life science research institution or company.

    • Students are able to develop a comprehensive project plan, including defining research goals, identifying problems, and selecting appropriate methodologies.

    • Students are able to effectively present their research project plans and motivations to their peers, demonstrating strong communication and presentation skills.

    • Students are able to critically evaluate and provide constructive feedback on peer research projects, fostering collaborative learning and critical thinking.

    • Students are able to apply the feedback received from peers and supervisors to refine their research projects, enhancing the overall quality and feasibility of their master's thesis.

    Lehrmethode

    • ​​Lecture 

    • ​Blended learning 

    • Independent Research: Students independently seek and select a research project, fostering self-directed learning and initiative. 

    • Mentorship and Supervision: With support from the Master's Thesis Coordinator and direct supervisors, students receive guidance and feedback, which is crucial for their development and project success. 

    • Project Planning: Students prepare a detailed project plan, including goals, problem definition, and methods, which enhances their planning and organizational skills. 

    • Peer Presentations: Presenting their project plans to peers helps students develop their communication and presentation skills. 

    • Group Discussions and Feedback: Engaging in discussions and receiving feedback from peers encourages critical thinking, reflection, and collaborative learning.​ 

    Prüfungsmethode

    Immanente Leistungsüberprüfung: Hand-ins, feedback, and presentations

    Literatur

    • ​​Holmes, Moody & Dine: Research Methods for the Biosciences, 3rd Ed, 2016, OUP 

    • ​Marder: Research Methods for Science, 2011, CUP 

    • ​Ruxton & Colegrave: Experimental Design for the Life Sciences, 4th Ed, 2017, OUP 

    • ​Sesinik: Einführung in das wissenschaftliche Arbeiten, 9th Ed, 2012, Oldenbourg Wissenschaftsverlag​ 

    Unterrichtssprache

    Englisch

    1 SWS
    1 ECTS
    Modul Toxicology & Molecular Immunology Labs

    Toxicology & Molecular Immunology Labs

    6 SWS   6 ECTS

    Lernergebnisse

    • Upon successful completion of the module, students are able to assess the toxicological and pharmacological properties of small molecules, utilizing concentration-dependent analyses in various cell-based test systems.

    • Students can apply key laboratory techniques, including luciferase reporter assays, Western blotting, qPCR, ELISA, flow cytometry, and viability assays, as well as immunological methods to address research questions.

    • Students are able to critically analyse and interpret data from toxicological and immunological assays, considering factors such as performance, sensitivity, significance, and controls, while applying these insights to solve research questions.

    • Students can apply essential scientific skills, including critical thinking, problem-solving, and data analysis, fostering curiosity, creativity, and perseverance in the pursuit of scientific discovery.

    • Students can comply with laboratory safety protocols and legal requirements, including the proper handling and disposal of chemical and biological substances.

    • Students are able to document and communicate research outcomes through well-structured scientific reports, demonstrating improved skills in scientific writing and presentation.

    6 SWS
    6 ECTS
    Molecular Immunology Lab | UE

    Molecular Immunology Lab | UE

    3 SWS   3 ECTS

    Inhalt

    • ​​​Deepening of theoretical immunological knowledge and practical application to research problems from the field of allergy research 

    • ​Working in small teams of 2 to 3 people on a scientific research question 

    • ​Finding as a team the best way to answer the research question 

    • ​Designing and performing of experiments using state-of-the-art immunological and molecular biological methods such as ELISAs, SDS-PAGE, immunoblotting, PCR, microscopy and flow cytometry 

    • ​Writing of laboratory report in the format of a scientific publication, in which the background of the research topic is summarized and the experimental work, the results are described and discussed (each student writes a lab report)​​ 

    Lernergebnisse

    • Students can apply immunological and molecular biology techniques for the solving of immunological research questions.

    • Students develop essential characteristics of scientists, such as curiosity, creativity and perseverance.

    • Students develop essential characteristics of scientists, such as curiosity, creativity and perseverance.

    • Students can behave correctly in accordance with the relevant safety guidelines and legal requirements when handling chemical and biological substances and with regard to the disposal of waste products in the laboratory.

    • Students have improved laboratory and essential scientific writing skills.

    Lehrmethode

    • Dialogue and discussion 

    • Individual work 

    • Group work 

    • Supervised distance learning 

    • Self-study 

    • Problem-based learning 

    • Project work 

    • Research-based learning 

    Prüfungsmethode

    Immanente Leistungsüberprüfung: Assessment of the design of the experiments; assessment of the performance of the experiments; assessment of the quality of the laboratory report

    Literatur

    • ​​​Abbas AK, Lichtman AH, Pillai S (2017): Cellular and Molecular Immunology, Elsevier Saunders, 978-0323479783 

    • ​Murphy K, Weaver C (2016): Janeway's Immunobiology, Garland Science, 978-0815345053 

    • ​Holgate ST, Church MK, Broide MH, Martinez FD (2012): Allergy, Elsevier Saunders, 978-0702057823 

    • ​Male D, Brostoff J, Roth DB, Roitt I (2013): Immunology, Elsevier Mosby, 978-0323080583​​ 

    Unterrichtssprache

    Englisch

    3 SWS
    3 ECTS
    Toxicology Lab | UE

    Toxicology Lab | UE

    3 SWS   3 ECTS

    Inhalt

    • ​​​Objective: Estimate the toxicological and therapeutic potential of a small molecule drug using cell-based test systems. 

    • Focus Areas: ​
      - Analyse the small molecule’s activation potential on the heat shock response pathway. 
      - ​Assess possible cytotoxic effects in a concentration-dependent manner. 

    • Assays and Methods Available
      - ​Luciferase reporter assays
      - ​Western blot
      - ​qPCR
      - ​Flow cytometry
      - ​ELISA
      - ​General viability assays

    • Student Role: Select and apply suitable methods from the provided options.​​ 

    Lernergebnisse

    • Students are able to evaluate the toxicological and therapeutic potential of small molecule drugs using various cell-based test systems.

    • Students are able to determine the pharmacological and cytotoxic effects of small molecules in a concentration-dependent manner.

    • Students are able to analyse and interpret data from various assays to assess the toxicological and therapeutic potential of small molecules in respect to the required time and workload, performance, sensitivity, significance, controls and simultaneous detection of multiple parameters.

    • Students can describe and perform luciferase reporter assays, Western blotting, qPCR, flow cytometry, ELISA, and general viability assays.

    • Students are able to adhere to safety protocols and legal requirements in the laboratory for handling of chemical and biological substances (including the disposal of waste products in the laboratory).

    Lehrmethode

    ​Practical course with independent performance of the experiments​ 

    Prüfungsmethode

    Immanente Leistungsüberprüfung: Entry exam on the computer (multiple choice), evaluation of performance in the lab, protocol

    Literatur

    • ​​​Bruce Alberts, Alexander Johnson, Julian Lewis, David Morgan, Martin Raff, Keith Roberts, Peter Walter (2014): Molecular Biology of the Cell. Garland Science, ISBN-13: 978-0815344643 

    • ​Gerhard Klebe (2009): Wirkstoffdesign (in German). Spektrum Akademischer Verlag, ISBN-13: 978-3827420466  

    • ​Salvatore J. Enna (2007): Short Protocols in Pharmacology and Drug Discovery. Current Protocols, ISBN-13: 978-0470095263​​ 

    Unterrichtssprache

    Englisch

    3 SWS
    3 ECTS

    Modul Master Thesis

    Master Thesis

    0 SWS   30 ECTS

    Lernergebnisse

    • Students can design and develop a research project in molecular biotechnology, formulating a clear research question, defining objectives, outlining methodologies, and anticipating expected outcomes.

    • Students can carry out research activities, including laboratory experiments, computational studies, and data collection, incorporating advanced techniques and methodologies from the Molecular Biotechnology program.

    • Students can uphold rigorous ethical standards throughout the research process, procuring necessary approvals, adhering to ethical guidelines, and maintaining transparency and accountability in all research activities.

    • Students can analyse and interpret collected data using suitable tools and techniques, critically evaluating results within the context of the research question and existing literature, showcasing scientific reasoning.

    • Students can prepare a comprehensive master's thesis that effectively communicates research findings, including a clear research question, objectives, experimental design, results, scientific interpretation, discussion of implications, and proper referencing of all sources and AI usage (if any).

    • Students can present and defend research findings to a specialist audience in a scientifically rigorous manner, engage in discussions on the interconnectivity of the research topic with the curriculum, and discuss current research topics in the field.

    30 ECTS
    Master Exam | AP

    Master Exam | AP

    0 SWS   2 ECTS

    Inhalt

    • ​​The master's examination is the final examination of the master's program before an examination committee of experts. 

    • ​The students present their master's thesis in the form of a lecture. 

    • ​The students are questioned about their presentation and they defend the contents and conclusions of their master’s thesis. 

    • ​They are asked to cross-connect the topic of their Master's thesis to relevant subjects of the degree program. 

    • ​The students reflect and discuss current research topics from the main fields of the Master's program with the examination committee of experts.​ 

    Lernergebnisse

    • Students can present, discuss and defend research results from their research project/master’s thesis to a specialist audience in a scientifically appropriate form.

    • Students can discuss with a group of experts, the interconnections of the topic of their master's thesis to relevant subjects in the curriculum and discuss other degree-relevant content.

    • Students can reflect on and discuss current research topics from the main fields of the master's program with a specialist audience.

    Lehrmethode

    • ​​Dialogue and discussion 

    • ​Individual work 

    • ​Problem-based learning 

    • ​Project work 

    • ​Research-based learning​ 

    Prüfungsmethode

    Endprüfung: For the presentation of the master's thesis up to 30 points are awarded by the examination committee. Up to 35 points are awarded for the subsequent discussion on the presentation. Up to 35 points are also awarded for the discussion of current research topics from the main areas of the master's program. The sum of these points gives the overall grade for the master's examination.

    Literatur

    None

    Unterrichtssprache

    Englisch

    2 ECTS
    Master Thesis | MT

    Master Thesis | MT

    0 SWS   28 ECTS

    Inhalt

    • ​​The students choose a (usually 6 to 9 month) research project based on their own interests during which they can apply the knowledge and skills that they gained during the first 3 semesters of the Master’s Degree “Molecular Biotechnology”. The project investigates a specific scientific question or problem relating to the content of the degree programme. 

    • ​The student submits a project proposal outlining objectives, methodology, and expected outcomes to the Head of the Degree Programme and can begin the project after approval. 

    • ​The student performs laboratory experiments, computational studies etc. to gather data. 

    • ​The student ensures that all research is conducted ethically, with appropriate approvals. 

    • ​The student analyses the collected data using appropriate tools and interprets the results in the context of the research question and existing literature. 

    • ​The student writes their master’s thesis including the research question, objectives, and significance of the project, the experimental design, materials, and procedures used, the observations of the study, and appropriate, scientific interpretation and discussion of the results and their implications and relates these to existing research and finally a conclusion. The thesis must comprehensively reference and cite all sources and literature reviewed in an appropriate manner and include any AI-use in its preparation.​ 

    Lernergebnisse

    • Students can independently design a research project based on their interests, formulate a clear research question, and develop a comprehensive project proposal outlining objectives, methodology, and expected outcomes.

    • Students can perform laboratory experiments, computational studies, and other relevant research activities to gather data, ensuring the application of advanced techniques and methodologies learned during the degree program.

    • Students can conduct research activities with a strong commitment to ethical standards, ensuring the integrity of their work by obtaining necessary approvals, adhering to ethical guidelines, and maintaining transparency and accountability throughout the research process.

    • Students can analyse collected data using appropriate tools and techniques, interpret the results in the context of the research question, and relate findings to existing literature, demonstrating critical thinking and scientific reasoning.

    • Students can write a comprehensive master’s thesis that includes a clear research question, objectives, experimental design, results, and scientific interpretation. They can effectively communicate their findings, discuss their implications, and properly reference all sources and literature reviewed, including any AI use in the preparation of the thesis.

    Lehrmethode

    • ​​Lecture 

    • ​Individual work 

    • ​Supervised distance learning 

    • ​Self-study 

    • ​Blended learning 

    • ​Problem-based learning 

    • ​Project work 

    • ​Research-based learning​ 

    Prüfungsmethode

    Endprüfung: Assessment by supervisor and assessor (lecturer in the Molecular Biotechnology Section) using a standardized questionnaire. In the case of 2 different grades, a third assessor writes an “Adjudication Assessment” which is final.

    Literatur

    None

    Unterrichtssprache

    Englisch

    28 ECTS

    Unterrichtszeiten
    Mo bis Fr ganztägig; berufsbezogene Fächer teilweise am Sa

    Unterrichtssprache
    Englisch

    Wahlmöglichkeiten im Curriculum
    Angebot und Teilnahme nach Maßgabe zur Verfügung stehender Plätze. 

    Semesterdaten

    Wintersemester 2024/25: 9. September 2024 bis 31. Jänner 2025
    Sommersemester 2025: 10. Februar 2025 bis 26. Juli 2025
    Wintersemester 2025/26: ab 8. September 2025

    Anzahl der Unterrichtswochen
    18 pro Semester

    Curriculum bis 2019
    Auslaufendes Curriculum


    Studieren einfach gemacht

    Bücher mit Geld
    Förderungen & Stipendien
    >
    Hände zeigen auf Weltkarte
    Auslandsaufenthalt

    Fachwissen, Sprachkenntnisse, Horizont erweitern.

    >
    Fisch springt in einen Wassertank mit anderen Fischen
    Offene Lehrveranstaltungen
    >
    Bücher und Laptop
    Wissenschaftliches Schreiben
    >
    Intensiv-Deutschkurs
    >
    EICC
    >
    Doktoratsservice
    >
    Nostrifizierung
    >
    Barrierefrei studieren
    >
    queer @ FH Campus Wien
    >

    Vernetzen mit Absolvent*innen und Organisationen

    Wir arbeiten eng mit zahlreichen Biotech-Unternehmen, Universitäten wie der Universität Wien und Forschungsinstituten zusammen und haben ein starkes internationales Netzwerk. Das sichert Ihnen Anknüpfungspunkte für Ihre Praktika, ein Auslandssemester Ihre Mitarbeit bei Forschungs- und Entwicklungsaktivitäten oder Ihre Jobsuche. Viele unserer Kooperationen sind im Campusnetzwerk abgebildet. Ein Blick darauf lohnt sich immer und führt Sie vielleicht zu einem neuen Job oder auf eine interessante Veranstaltung unserer Kooperationspartner*innen! Zudem bietet die BioTech Association, ein von Absolvent*innen gegründeter Verein zur Förderung der Vernetzung im biotechnologischen und molekularbiologischen Forschungs- und Industriesektor, einen virtuellen Raum zum Austausch. Hier gelangen Sie zum Club BioTech Association.


    Nach dem Studium

    Als Absolvent*in dieses Studiums stehen Ihnen vielfältige Berufsfelder und Karrierechancen offen, auch auf globaler Ebene.

    Als Absolvent*innen sind Sie künftig hauptsächlich in Forschung und Entwicklung tätig. Sie können ein Life Science Doktoratsstudium an einer österreichischen oder internationalen Universität machen. Sie sind qualifiziert, um ein Labor oder Forschungsgruppen zu leiten. Darüber hinaus haben Sie das unternehmerische Know-how, selbst ein Start-up zu gründen. Sie arbeiten in folgenden Branchen und Bereichen:

    • Klassische Industriezweige (Pharma, Biotech, Medtech, Lebensmittel, etc.)

    • Medizinische Forschung (z.B. Tumorbiologie, Impfstoffentwicklung, degenerative Krankheiten)

    • Forschungs- und Entwicklungsabteilungen von etablierten pharmazeutischen (Life Science) Firmen wie auch biotechnologische Start-Up Firmen

    • Universitäten, außeruniversitären Forschungseinrichtungen (z.B.: Österreichische Akademie der Wissenschaften, IMP, AIT, IST, etc.), Fachhochschulen

      • Analytische Labors in Industrie und Kliniken

      • Veterinärforschung und -entwicklung

      • Behörden

        <
        >
        Portrait einer jungen Dame in weißem Oberteil im Hintergrund Fenster und grüne Pflanzen

        „Wir sind Teil einer Start-up-Community“

        Sejla Salic, Studentin der Molekularen Biotechnologie, war eine von 18 Österreicher*innen, die unter 800 für eine Teilnahme am Start-up-Programm "Austria to Austin" der US-Botschaft ausgewählt wurden.

        Weiterlesen
        drei Wissenschafter in ihrem Labor in Harvard

        Der Harvard-Kick

        “Der Moment, in dem ich etwas entdecke, was außer mir sonst niemand weiß, das ist meine persönliche Mondlandung. Gleichzeitig ist es mir egal, wenn ein wissenschaftliches Experiment nicht sofort funktioniert, dann mach ich es eben nochmal“, beschreibt Georg Winter, wie er tickt. Vor über zehn Jahren studierte er Molekulare Biotechnologie an der FH Campus Wien und machte anschließend seinen Ph.D. am CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences. Nach Harvard zu gehen, war ein geplanter Zufall.

        Weiterlesen

        Gruppe von Menschen
        27. November 2024

        Ines Swoboda auf Alpha-Gal Symposium an der University of Georgia

        Von 20. bis 21. November 2024 versammelten sich führende Expert*innen, darunter Allergieforscherin Ines Swoboda, an der University of Georgia, um die neuesten wissenschaftlichen Erkenntnisse zur Alpha-Gal-Allergie zu diskutieren.

        • Forschungszentrum Molecular Biotechnology
        • Applied Life Sciences
         

        Events

        Alle Events
        <
        >
         

        Aktivitäten in Forschung & Entwicklung

        Nachhaltigkeit bei Verpackungen und bei der Herstellung von Organismen, oder etwa Allergieforschung auf der Zellebene – hier passiert zukunftsfähige Forschung.

        [SIMBio]8+

        Leitung: FH-Prof. Mag. Dr. Bea Kuen-Krismer


        Downloads und Links

        Themenfolder Applied Life Sciences
        pdf, 1 MB

        pdf, 2 MB

        Kontakt

        Studiengangsleitung

        Administration

        Elisabeth Hablas
        Verena Schweitzer
        Zeljka Grujic, BA
        Mag.a Janina Agis-Blei

        Favoritenstraße 222, F.3.23
        1100 Wien
        +43 1 606 68 77-3500
        +43 1 606 68 77-3509
        biotechnologie@fh-campuswien.ac.at

        Lageplan Hauptstandort Favoriten (Google Maps)

        Öffnungszeiten

        Mo. - Fr., 9.00-12.30 Uhr
        Mo: 16.00-17.00 Uhr
        Di: 16.00-17.00 Uhr
        Do: 16.00-17.00 Uhr

        Information zu Bewerbung und Aufnahme

        biotechnologie@fh-campuswien.ac.at 

         

        Lehrende und Forschende


         

        Sie möchten mehr wissen? Wir helfen Ihnen.

         

        Haben Sie alle gewünschten Informationen gefunden?

        • Ja
        • Nein